Metamath Proof Explorer


Theorem updjudhf

Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022)

Ref Expression
Hypotheses updjud.f φ F : A C
updjud.g φ G : B C
updjudhf.h H = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x
Assertion updjudhf φ H : A ⊔︀ B C

Proof

Step Hyp Ref Expression
1 updjud.f φ F : A C
2 updjud.g φ G : B C
3 updjudhf.h H = x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x
4 eldju2ndl x A ⊔︀ B 1 st x = 2 nd x A
5 4 ex x A ⊔︀ B 1 st x = 2 nd x A
6 ffvelrn F : A C 2 nd x A F 2 nd x C
7 6 ex F : A C 2 nd x A F 2 nd x C
8 1 7 syl φ 2 nd x A F 2 nd x C
9 5 8 sylan9r φ x A ⊔︀ B 1 st x = F 2 nd x C
10 9 imp φ x A ⊔︀ B 1 st x = F 2 nd x C
11 df-ne 1 st x ¬ 1 st x =
12 eldju2ndr x A ⊔︀ B 1 st x 2 nd x B
13 12 ex x A ⊔︀ B 1 st x 2 nd x B
14 ffvelrn G : B C 2 nd x B G 2 nd x C
15 14 ex G : B C 2 nd x B G 2 nd x C
16 2 15 syl φ 2 nd x B G 2 nd x C
17 13 16 sylan9r φ x A ⊔︀ B 1 st x G 2 nd x C
18 11 17 syl5bir φ x A ⊔︀ B ¬ 1 st x = G 2 nd x C
19 18 imp φ x A ⊔︀ B ¬ 1 st x = G 2 nd x C
20 10 19 ifclda φ x A ⊔︀ B if 1 st x = F 2 nd x G 2 nd x C
21 20 3 fmptd φ H : A ⊔︀ B C