Metamath Proof Explorer


Theorem updjudhf

Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022)

Ref Expression
Hypotheses updjud.f φF:AC
updjud.g φG:BC
updjudhf.h H=xA⊔︀Bif1stx=F2ndxG2ndx
Assertion updjudhf φH:A⊔︀BC

Proof

Step Hyp Ref Expression
1 updjud.f φF:AC
2 updjud.g φG:BC
3 updjudhf.h H=xA⊔︀Bif1stx=F2ndxG2ndx
4 eldju2ndl xA⊔︀B1stx=2ndxA
5 4 ex xA⊔︀B1stx=2ndxA
6 ffvelcdm F:AC2ndxAF2ndxC
7 6 ex F:AC2ndxAF2ndxC
8 1 7 syl φ2ndxAF2ndxC
9 5 8 sylan9r φxA⊔︀B1stx=F2ndxC
10 9 imp φxA⊔︀B1stx=F2ndxC
11 df-ne 1stx¬1stx=
12 eldju2ndr xA⊔︀B1stx2ndxB
13 12 ex xA⊔︀B1stx2ndxB
14 ffvelcdm G:BC2ndxBG2ndxC
15 14 ex G:BC2ndxBG2ndxC
16 2 15 syl φ2ndxBG2ndxC
17 13 16 sylan9r φxA⊔︀B1stxG2ndxC
18 11 17 biimtrrid φxA⊔︀B¬1stx=G2ndxC
19 18 imp φxA⊔︀B¬1stx=G2ndxC
20 10 19 ifclda φxA⊔︀Bif1stx=F2ndxG2ndxC
21 20 3 fmptd φH:A⊔︀BC