| Step | Hyp | Ref | Expression | 
						
							| 1 |  | updjud.f |  | 
						
							| 2 |  | updjud.g |  | 
						
							| 3 |  | updjudhf.h |  | 
						
							| 4 | 1 2 3 | updjudhf |  | 
						
							| 5 | 4 | ffnd |  | 
						
							| 6 |  | inlresf |  | 
						
							| 7 |  | ffn |  | 
						
							| 8 | 6 7 | mp1i |  | 
						
							| 9 |  | frn |  | 
						
							| 10 | 6 9 | mp1i |  | 
						
							| 11 |  | fnco |  | 
						
							| 12 | 5 8 10 11 | syl3anc |  | 
						
							| 13 | 1 | ffnd |  | 
						
							| 14 |  | fvco2 |  | 
						
							| 15 | 8 14 | sylan |  | 
						
							| 16 |  | fvres |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 17 | fveq2d |  | 
						
							| 19 |  | fveqeq2 |  | 
						
							| 20 |  | 2fveq3 |  | 
						
							| 21 |  | 2fveq3 |  | 
						
							| 22 | 19 20 21 | ifbieq12d |  | 
						
							| 23 | 22 | adantl |  | 
						
							| 24 |  | 1stinl |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 26 | iftrued |  | 
						
							| 28 | 23 27 | eqtrd |  | 
						
							| 29 |  | djulcl |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 1 | adantr |  | 
						
							| 32 |  | 2ndinl |  | 
						
							| 33 | 32 | adantl |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 33 34 | eqeltrd |  | 
						
							| 36 | 31 35 | ffvelcdmd |  | 
						
							| 37 | 3 28 30 36 | fvmptd2 |  | 
						
							| 38 | 18 37 | eqtrd |  | 
						
							| 39 | 33 | fveq2d |  | 
						
							| 40 | 15 38 39 | 3eqtrd |  | 
						
							| 41 | 12 13 40 | eqfnfvd |  |