| Step | Hyp | Ref | Expression | 
						
							| 1 |  | updjud.f |  |-  ( ph -> F : A --> C ) | 
						
							| 2 |  | updjud.g |  |-  ( ph -> G : B --> C ) | 
						
							| 3 |  | updjudhf.h |  |-  H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) | 
						
							| 4 | 1 2 3 | updjudhf |  |-  ( ph -> H : ( A |_| B ) --> C ) | 
						
							| 5 | 4 | ffnd |  |-  ( ph -> H Fn ( A |_| B ) ) | 
						
							| 6 |  | inlresf |  |-  ( inl |` A ) : A --> ( A |_| B ) | 
						
							| 7 |  | ffn |  |-  ( ( inl |` A ) : A --> ( A |_| B ) -> ( inl |` A ) Fn A ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( ph -> ( inl |` A ) Fn A ) | 
						
							| 9 |  | frn |  |-  ( ( inl |` A ) : A --> ( A |_| B ) -> ran ( inl |` A ) C_ ( A |_| B ) ) | 
						
							| 10 | 6 9 | mp1i |  |-  ( ph -> ran ( inl |` A ) C_ ( A |_| B ) ) | 
						
							| 11 |  | fnco |  |-  ( ( H Fn ( A |_| B ) /\ ( inl |` A ) Fn A /\ ran ( inl |` A ) C_ ( A |_| B ) ) -> ( H o. ( inl |` A ) ) Fn A ) | 
						
							| 12 | 5 8 10 11 | syl3anc |  |-  ( ph -> ( H o. ( inl |` A ) ) Fn A ) | 
						
							| 13 | 1 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 14 |  | fvco2 |  |-  ( ( ( inl |` A ) Fn A /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( H ` ( ( inl |` A ) ` a ) ) ) | 
						
							| 15 | 8 14 | sylan |  |-  ( ( ph /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( H ` ( ( inl |` A ) ` a ) ) ) | 
						
							| 16 |  | fvres |  |-  ( a e. A -> ( ( inl |` A ) ` a ) = ( inl ` a ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ a e. A ) -> ( ( inl |` A ) ` a ) = ( inl ` a ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( ph /\ a e. A ) -> ( H ` ( ( inl |` A ) ` a ) ) = ( H ` ( inl ` a ) ) ) | 
						
							| 19 |  | fveqeq2 |  |-  ( x = ( inl ` a ) -> ( ( 1st ` x ) = (/) <-> ( 1st ` ( inl ` a ) ) = (/) ) ) | 
						
							| 20 |  | 2fveq3 |  |-  ( x = ( inl ` a ) -> ( F ` ( 2nd ` x ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( x = ( inl ` a ) -> ( G ` ( 2nd ` x ) ) = ( G ` ( 2nd ` ( inl ` a ) ) ) ) | 
						
							| 22 | 19 20 21 | ifbieq12d |  |-  ( x = ( inl ` a ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) ) | 
						
							| 24 |  | 1stinl |  |-  ( a e. A -> ( 1st ` ( inl ` a ) ) = (/) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ a e. A ) -> ( 1st ` ( inl ` a ) ) = (/) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> ( 1st ` ( inl ` a ) ) = (/) ) | 
						
							| 27 | 26 | iftrued |  |-  ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) | 
						
							| 28 | 23 27 | eqtrd |  |-  ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) | 
						
							| 29 |  | djulcl |  |-  ( a e. A -> ( inl ` a ) e. ( A |_| B ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ a e. A ) -> ( inl ` a ) e. ( A |_| B ) ) | 
						
							| 31 | 1 | adantr |  |-  ( ( ph /\ a e. A ) -> F : A --> C ) | 
						
							| 32 |  | 2ndinl |  |-  ( a e. A -> ( 2nd ` ( inl ` a ) ) = a ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ a e. A ) -> ( 2nd ` ( inl ` a ) ) = a ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ a e. A ) -> a e. A ) | 
						
							| 35 | 33 34 | eqeltrd |  |-  ( ( ph /\ a e. A ) -> ( 2nd ` ( inl ` a ) ) e. A ) | 
						
							| 36 | 31 35 | ffvelcdmd |  |-  ( ( ph /\ a e. A ) -> ( F ` ( 2nd ` ( inl ` a ) ) ) e. C ) | 
						
							| 37 | 3 28 30 36 | fvmptd2 |  |-  ( ( ph /\ a e. A ) -> ( H ` ( inl ` a ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) | 
						
							| 38 | 18 37 | eqtrd |  |-  ( ( ph /\ a e. A ) -> ( H ` ( ( inl |` A ) ` a ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) | 
						
							| 39 | 33 | fveq2d |  |-  ( ( ph /\ a e. A ) -> ( F ` ( 2nd ` ( inl ` a ) ) ) = ( F ` a ) ) | 
						
							| 40 | 15 38 39 | 3eqtrd |  |-  ( ( ph /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( F ` a ) ) | 
						
							| 41 | 12 13 40 | eqfnfvd |  |-  ( ph -> ( H o. ( inl |` A ) ) = F ) |