| Step | Hyp | Ref | Expression | 
						
							| 1 |  | updjud.f |  |-  ( ph -> F : A --> C ) | 
						
							| 2 |  | updjud.g |  |-  ( ph -> G : B --> C ) | 
						
							| 3 |  | updjudhf.h |  |-  H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) | 
						
							| 4 | 1 2 3 | updjudhf |  |-  ( ph -> H : ( A |_| B ) --> C ) | 
						
							| 5 | 4 | ffnd |  |-  ( ph -> H Fn ( A |_| B ) ) | 
						
							| 6 |  | inrresf |  |-  ( inr |` B ) : B --> ( A |_| B ) | 
						
							| 7 |  | ffn |  |-  ( ( inr |` B ) : B --> ( A |_| B ) -> ( inr |` B ) Fn B ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( ph -> ( inr |` B ) Fn B ) | 
						
							| 9 |  | frn |  |-  ( ( inr |` B ) : B --> ( A |_| B ) -> ran ( inr |` B ) C_ ( A |_| B ) ) | 
						
							| 10 | 6 9 | mp1i |  |-  ( ph -> ran ( inr |` B ) C_ ( A |_| B ) ) | 
						
							| 11 |  | fnco |  |-  ( ( H Fn ( A |_| B ) /\ ( inr |` B ) Fn B /\ ran ( inr |` B ) C_ ( A |_| B ) ) -> ( H o. ( inr |` B ) ) Fn B ) | 
						
							| 12 | 5 8 10 11 | syl3anc |  |-  ( ph -> ( H o. ( inr |` B ) ) Fn B ) | 
						
							| 13 | 2 | ffnd |  |-  ( ph -> G Fn B ) | 
						
							| 14 |  | fvco2 |  |-  ( ( ( inr |` B ) Fn B /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( H ` ( ( inr |` B ) ` b ) ) ) | 
						
							| 15 | 8 14 | sylan |  |-  ( ( ph /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( H ` ( ( inr |` B ) ` b ) ) ) | 
						
							| 16 |  | fvres |  |-  ( b e. B -> ( ( inr |` B ) ` b ) = ( inr ` b ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ b e. B ) -> ( ( inr |` B ) ` b ) = ( inr ` b ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( ph /\ b e. B ) -> ( H ` ( ( inr |` B ) ` b ) ) = ( H ` ( inr ` b ) ) ) | 
						
							| 19 |  | fveqeq2 |  |-  ( x = ( inr ` b ) -> ( ( 1st ` x ) = (/) <-> ( 1st ` ( inr ` b ) ) = (/) ) ) | 
						
							| 20 |  | 2fveq3 |  |-  ( x = ( inr ` b ) -> ( F ` ( 2nd ` x ) ) = ( F ` ( 2nd ` ( inr ` b ) ) ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( x = ( inr ` b ) -> ( G ` ( 2nd ` x ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) | 
						
							| 22 | 19 20 21 | ifbieq12d |  |-  ( x = ( inr ` b ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) ) | 
						
							| 24 |  | 1stinr |  |-  ( b e. B -> ( 1st ` ( inr ` b ) ) = 1o ) | 
						
							| 25 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 26 | 25 | neii |  |-  -. 1o = (/) | 
						
							| 27 |  | eqeq1 |  |-  ( ( 1st ` ( inr ` b ) ) = 1o -> ( ( 1st ` ( inr ` b ) ) = (/) <-> 1o = (/) ) ) | 
						
							| 28 | 26 27 | mtbiri |  |-  ( ( 1st ` ( inr ` b ) ) = 1o -> -. ( 1st ` ( inr ` b ) ) = (/) ) | 
						
							| 29 | 24 28 | syl |  |-  ( b e. B -> -. ( 1st ` ( inr ` b ) ) = (/) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ b e. B ) -> -. ( 1st ` ( inr ` b ) ) = (/) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> -. ( 1st ` ( inr ` b ) ) = (/) ) | 
						
							| 32 | 31 | iffalsed |  |-  ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) | 
						
							| 33 | 23 32 | eqtrd |  |-  ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) | 
						
							| 34 |  | djurcl |  |-  ( b e. B -> ( inr ` b ) e. ( A |_| B ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ b e. B ) -> ( inr ` b ) e. ( A |_| B ) ) | 
						
							| 36 | 2 | adantr |  |-  ( ( ph /\ b e. B ) -> G : B --> C ) | 
						
							| 37 |  | 2ndinr |  |-  ( b e. B -> ( 2nd ` ( inr ` b ) ) = b ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ b e. B ) -> ( 2nd ` ( inr ` b ) ) = b ) | 
						
							| 39 |  | simpr |  |-  ( ( ph /\ b e. B ) -> b e. B ) | 
						
							| 40 | 38 39 | eqeltrd |  |-  ( ( ph /\ b e. B ) -> ( 2nd ` ( inr ` b ) ) e. B ) | 
						
							| 41 | 36 40 | ffvelcdmd |  |-  ( ( ph /\ b e. B ) -> ( G ` ( 2nd ` ( inr ` b ) ) ) e. C ) | 
						
							| 42 | 3 33 35 41 | fvmptd2 |  |-  ( ( ph /\ b e. B ) -> ( H ` ( inr ` b ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) | 
						
							| 43 | 18 42 | eqtrd |  |-  ( ( ph /\ b e. B ) -> ( H ` ( ( inr |` B ) ` b ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) | 
						
							| 44 | 38 | fveq2d |  |-  ( ( ph /\ b e. B ) -> ( G ` ( 2nd ` ( inr ` b ) ) ) = ( G ` b ) ) | 
						
							| 45 | 15 43 44 | 3eqtrd |  |-  ( ( ph /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( G ` b ) ) | 
						
							| 46 | 12 13 45 | eqfnfvd |  |-  ( ph -> ( H o. ( inr |` B ) ) = G ) |