| Step | Hyp | Ref | Expression | 
						
							| 1 |  | updjud.f |  |-  ( ph -> F : A --> C ) | 
						
							| 2 |  | updjud.g |  |-  ( ph -> G : B --> C ) | 
						
							| 3 |  | updjud.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | updjud.b |  |-  ( ph -> B e. W ) | 
						
							| 5 | 3 4 | jca |  |-  ( ph -> ( A e. V /\ B e. W ) ) | 
						
							| 6 |  | djuex |  |-  ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V ) | 
						
							| 7 |  | mptexg |  |-  ( ( A |_| B ) e. _V -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) e. _V ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ph -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) e. _V ) | 
						
							| 9 |  | feq1 |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h : ( A |_| B ) --> C <-> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C ) ) | 
						
							| 10 |  | coeq1 |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h o. ( inl |` A ) ) = F <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F ) ) | 
						
							| 12 |  | coeq1 |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ) | 
						
							| 13 | 12 | eqeq1d |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h o. ( inr |` B ) ) = G <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) | 
						
							| 14 | 9 11 13 | 3anbi123d |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h = k <-> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) <-> ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) | 
						
							| 17 | 16 | ralbidv |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) <-> A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) | 
						
							| 18 | 14 17 | anbi12d |  |-  ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) <-> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ) -> ( ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) <-> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) | 
						
							| 20 |  | eqid |  |-  ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) | 
						
							| 21 | 1 2 20 | updjudhf |  |-  ( ph -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C ) | 
						
							| 22 | 1 2 20 | updjudhcoinlf |  |-  ( ph -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F ) | 
						
							| 23 | 1 2 20 | updjudhcoinrg |  |-  ( ph -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) | 
						
							| 24 |  | simpr |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) | 
						
							| 25 |  | eqeq2 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ( k o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) <-> ( k o. ( inl |` A ) ) = F ) ) | 
						
							| 26 |  | fvres |  |-  ( z e. A -> ( ( inl |` A ) ` z ) = ( inl ` z ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( z e. A -> ( inl ` z ) = ( ( inl |` A ) ` z ) ) | 
						
							| 28 | 27 | eqeq2d |  |-  ( z e. A -> ( y = ( inl ` z ) <-> y = ( ( inl |` A ) ` z ) ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( inl ` z ) <-> y = ( ( inl |` A ) ` z ) ) ) | 
						
							| 30 |  | fveq1 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( k o. ( inl |` A ) ) ` z ) ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( k o. ( inl |` A ) ) ` z ) ) | 
						
							| 32 |  | inlresf |  |-  ( inl |` A ) : A --> ( A |_| B ) | 
						
							| 33 |  | ffn |  |-  ( ( inl |` A ) : A --> ( A |_| B ) -> ( inl |` A ) Fn A ) | 
						
							| 34 | 32 33 | mp1i |  |-  ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) -> ( inl |` A ) Fn A ) | 
						
							| 35 |  | fvco2 |  |-  ( ( ( inl |` A ) Fn A /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 36 | 34 35 | sylan |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 37 |  | fvco2 |  |-  ( ( ( inl |` A ) Fn A /\ z e. A ) -> ( ( k o. ( inl |` A ) ) ` z ) = ( k ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 38 | 34 37 | sylan |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( k o. ( inl |` A ) ) ` z ) = ( k ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 39 | 31 36 38 | 3eqtr3d |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) = ( k ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 40 |  | fveq2 |  |-  ( y = ( ( inl |` A ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 41 |  | fveq2 |  |-  ( y = ( ( inl |` A ) ` z ) -> ( k ` y ) = ( k ` ( ( inl |` A ) ` z ) ) ) | 
						
							| 42 | 40 41 | eqeq12d |  |-  ( y = ( ( inl |` A ) ` z ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) = ( k ` ( ( inl |` A ) ` z ) ) ) ) | 
						
							| 43 | 39 42 | syl5ibrcom |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( ( inl |` A ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 44 | 29 43 | sylbid |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( inl ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 45 | 44 | expimpd |  |-  ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 47 | 46 | eqcoms |  |-  ( ( k o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 48 | 25 47 | biimtrrdi |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ( k o. ( inl |` A ) ) = F -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) | 
						
							| 49 | 48 | com23 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ph -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) | 
						
							| 50 | 49 | 3ad2ant2 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ph -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) | 
						
							| 51 | 50 | impcom |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 52 | 51 | com12 |  |-  ( ( k o. ( inl |` A ) ) = F -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 54 | 53 | impcom |  |-  ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 55 | 54 | com12 |  |-  ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 56 | 55 | rexlimiva |  |-  ( E. z e. A y = ( inl ` z ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 57 |  | eqeq2 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ( k o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) <-> ( k o. ( inr |` B ) ) = G ) ) | 
						
							| 58 |  | fvres |  |-  ( z e. B -> ( ( inr |` B ) ` z ) = ( inr ` z ) ) | 
						
							| 59 | 58 | eqcomd |  |-  ( z e. B -> ( inr ` z ) = ( ( inr |` B ) ` z ) ) | 
						
							| 60 | 59 | eqeq2d |  |-  ( z e. B -> ( y = ( inr ` z ) <-> y = ( ( inr |` B ) ` z ) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( inr ` z ) <-> y = ( ( inr |` B ) ` z ) ) ) | 
						
							| 62 |  | fveq1 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( k o. ( inr |` B ) ) ` z ) ) | 
						
							| 63 | 62 | ad2antrr |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( k o. ( inr |` B ) ) ` z ) ) | 
						
							| 64 |  | inrresf |  |-  ( inr |` B ) : B --> ( A |_| B ) | 
						
							| 65 |  | ffn |  |-  ( ( inr |` B ) : B --> ( A |_| B ) -> ( inr |` B ) Fn B ) | 
						
							| 66 | 64 65 | mp1i |  |-  ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) -> ( inr |` B ) Fn B ) | 
						
							| 67 |  | fvco2 |  |-  ( ( ( inr |` B ) Fn B /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 68 | 66 67 | sylan |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 69 |  | fvco2 |  |-  ( ( ( inr |` B ) Fn B /\ z e. B ) -> ( ( k o. ( inr |` B ) ) ` z ) = ( k ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 70 | 66 69 | sylan |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( k o. ( inr |` B ) ) ` z ) = ( k ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 71 | 63 68 70 | 3eqtr3d |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) = ( k ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 72 |  | fveq2 |  |-  ( y = ( ( inr |` B ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 73 |  | fveq2 |  |-  ( y = ( ( inr |` B ) ` z ) -> ( k ` y ) = ( k ` ( ( inr |` B ) ` z ) ) ) | 
						
							| 74 | 72 73 | eqeq12d |  |-  ( y = ( ( inr |` B ) ` z ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) = ( k ` ( ( inr |` B ) ` z ) ) ) ) | 
						
							| 75 | 71 74 | syl5ibrcom |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( ( inr |` B ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 76 | 61 75 | sylbid |  |-  ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( inr ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 77 | 76 | expimpd |  |-  ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 78 | 77 | ex |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 79 | 78 | eqcoms |  |-  ( ( k o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 80 | 57 79 | biimtrrdi |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ( k o. ( inr |` B ) ) = G -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) | 
						
							| 81 | 80 | com23 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ph -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) | 
						
							| 82 | 81 | 3ad2ant3 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ph -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) | 
						
							| 83 | 82 | impcom |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 84 | 83 | com12 |  |-  ( ( k o. ( inr |` B ) ) = G -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 85 | 84 | 3ad2ant3 |  |-  ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) | 
						
							| 86 | 85 | impcom |  |-  ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 87 | 86 | com12 |  |-  ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 88 | 87 | rexlimiva |  |-  ( E. z e. B y = ( inr ` z ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 89 | 56 88 | jaoi |  |-  ( ( E. z e. A y = ( inl ` z ) \/ E. z e. B y = ( inr ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 90 |  | djur |  |-  ( y e. ( A |_| B ) -> ( E. z e. A y = ( inl ` z ) \/ E. z e. B y = ( inr ` z ) ) ) | 
						
							| 91 | 89 90 | syl11 |  |-  ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( y e. ( A |_| B ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 92 | 91 | ralrimiv |  |-  ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) | 
						
							| 93 |  | ffn |  |-  ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) | 
						
							| 94 | 93 | 3ad2ant1 |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) | 
						
							| 96 |  | ffn |  |-  ( k : ( A |_| B ) --> C -> k Fn ( A |_| B ) ) | 
						
							| 97 | 96 | 3ad2ant1 |  |-  ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> k Fn ( A |_| B ) ) | 
						
							| 98 |  | eqfnfv |  |-  ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) /\ k Fn ( A |_| B ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k <-> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 99 | 95 97 98 | syl2an |  |-  ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k <-> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) | 
						
							| 100 | 92 99 | mpbird |  |-  ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) | 
						
							| 101 | 100 | ex |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) | 
						
							| 102 | 101 | ralrimivw |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) | 
						
							| 103 | 24 102 | jca |  |-  ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) | 
						
							| 104 | 103 | ex |  |-  ( ph -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) | 
						
							| 105 | 21 22 23 104 | mp3and |  |-  ( ph -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) | 
						
							| 106 | 8 19 105 | rspcedvd |  |-  ( ph -> E. h e. _V ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) ) | 
						
							| 107 |  | feq1 |  |-  ( h = k -> ( h : ( A |_| B ) --> C <-> k : ( A |_| B ) --> C ) ) | 
						
							| 108 |  | coeq1 |  |-  ( h = k -> ( h o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) ) | 
						
							| 109 | 108 | eqeq1d |  |-  ( h = k -> ( ( h o. ( inl |` A ) ) = F <-> ( k o. ( inl |` A ) ) = F ) ) | 
						
							| 110 |  | coeq1 |  |-  ( h = k -> ( h o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) ) | 
						
							| 111 | 110 | eqeq1d |  |-  ( h = k -> ( ( h o. ( inr |` B ) ) = G <-> ( k o. ( inr |` B ) ) = G ) ) | 
						
							| 112 | 107 109 111 | 3anbi123d |  |-  ( h = k -> ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) ) | 
						
							| 113 | 112 | reu8 |  |-  ( E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> E. h e. _V ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) ) | 
						
							| 114 | 106 113 | sylibr |  |-  ( ph -> E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) | 
						
							| 115 |  | reuv |  |-  ( E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) | 
						
							| 116 | 114 115 | sylib |  |-  ( ph -> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |