Metamath Proof Explorer


Theorem upgr1e

Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)

Ref Expression
Hypotheses upgr1e.v V=VtxG
upgr1e.a φAX
upgr1e.b φBV
upgr1e.c φCV
upgr1e.e φiEdgG=ABC
Assertion upgr1e φGUPGraph

Proof

Step Hyp Ref Expression
1 upgr1e.v V=VtxG
2 upgr1e.a φAX
3 upgr1e.b φBV
4 upgr1e.c φCV
5 upgr1e.e φiEdgG=ABC
6 prex BCV
7 6 snid BCBC
8 7 a1i φBCBC
9 2 8 fsnd φABC:ABC
10 3 4 prssd φBCV
11 10 1 sseqtrdi φBCVtxG
12 6 elpw BC𝒫VtxGBCVtxG
13 11 12 sylibr φBC𝒫VtxG
14 13 3 upgr1elem φBCx𝒫VtxG|x2
15 9 14 fssd φABC:Ax𝒫VtxG|x2
16 15 ffdmd φABC:domABCx𝒫VtxG|x2
17 5 dmeqd φdomiEdgG=domABC
18 5 17 feq12d φiEdgG:domiEdgGx𝒫VtxG|x2ABC:domABCx𝒫VtxG|x2
19 16 18 mpbird φiEdgG:domiEdgGx𝒫VtxG|x2
20 1 1vgrex BVGV
21 eqid VtxG=VtxG
22 eqid iEdgG=iEdgG
23 21 22 isupgr GVGUPGraphiEdgG:domiEdgGx𝒫VtxG|x2
24 3 20 23 3syl φGUPGraphiEdgG:domiEdgGx𝒫VtxG|x2
25 19 24 mpbird φGUPGraph