Metamath Proof Explorer


Theorem upgr1elem

Description: Lemma for upgr1e and uspgr1e . (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses upgr1elem.s φBCS
upgr1elem.b φBW
Assertion upgr1elem φBCxS|x2

Proof

Step Hyp Ref Expression
1 upgr1elem.s φBCS
2 upgr1elem.b φBW
3 fveq2 x=BCx=BC
4 3 breq1d x=BCx2BC2
5 prnzg BWBC
6 2 5 syl φBC
7 eldifsn BCSBCSBC
8 1 6 7 sylanbrc φBCS
9 hashprlei BCFinBC2
10 9 simpri BC2
11 10 a1i φBC2
12 4 8 11 elrabd φBCxS|x2
13 12 snssd φBCxS|x2