Metamath Proof Explorer


Theorem upgrbi

Description: Show that an unordered pair is a valid edge in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Revised by AV, 28-Feb-2021)

Ref Expression
Hypotheses upgrbi.x XV
upgrbi.y YV
Assertion upgrbi XYx𝒫V|x2

Proof

Step Hyp Ref Expression
1 upgrbi.x XV
2 upgrbi.y YV
3 prssi XVYVXYV
4 1 2 3 mp2an XYV
5 prex XYV
6 5 elpw XY𝒫VXYV
7 4 6 mpbir XY𝒫V
8 1 elexi XV
9 8 prnz XY
10 eldifsn XY𝒫VXY𝒫VXY
11 7 9 10 mpbir2an XY𝒫V
12 hashprlei XYFinXY2
13 12 simpri XY2
14 fveq2 x=XYx=XY
15 14 breq1d x=XYx2XY2
16 15 elrab XYx𝒫V|x2XY𝒫VXY2
17 11 13 16 mpbir2an XYx𝒫V|x2