Metamath Proof Explorer


Theorem uptposlem

Description: Lemma for uptpos . (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppcuprcl2.x No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
uptpos.h φ tpos G = H
Assertion uptposlem φ tpos H = G

Proof

Step Hyp Ref Expression
1 oppcuprcl2.x Could not format ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |-
2 uptpos.h φ tpos G = H
3 2 tposeqd φ tpos tpos G = tpos H
4 eqid Base O = Base O
5 1 uprcl2 φ F O Func P G
6 4 5 funcfn2 φ G Fn Base O × Base O
7 fnrel G Fn Base O × Base O Rel G
8 6 7 syl φ Rel G
9 relxp Rel Base O × Base O
10 6 fndmd φ dom G = Base O × Base O
11 10 releqd φ Rel dom G Rel Base O × Base O
12 9 11 mpbiri φ Rel dom G
13 tpostpos2 Rel G Rel dom G tpos tpos G = G
14 8 12 13 syl2anc φ tpos tpos G = G
15 3 14 eqtr3d φ tpos H = G