Metamath Proof Explorer


Theorem usgr2pth0

Description: In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021)

Ref Expression
Hypotheses usgr2pthlem.v V=VtxG
usgr2pthlem.i I=iEdgG
Assertion usgr2pth0 GUSGraphFPathsGPF=2F:0..^21-1domIP:021-1VxVyVxzVxyP0=xP1=zP2=yIF0=xzIF1=zy

Proof

Step Hyp Ref Expression
1 usgr2pthlem.v V=VtxG
2 usgr2pthlem.i I=iEdgG
3 1 2 usgr2pth GUSGraphFPathsGPF=2F:0..^21-1domIP:021-1VxVzVxyVxzP0=xP1=zP2=yIF0=xzIF1=zy
4 r19.42v yVxzzxP0=xP1=zP2=yIF0=xzIF1=zyzxyVxzP0=xP1=zP2=yIF0=xzIF1=zy
5 rexdifpr yVxzzxP0=xP1=zP2=yIF0=xzIF1=zyyVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zy
6 4 5 bitr3i zxyVxzP0=xP1=zP2=yIF0=xzIF1=zyyVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zy
7 6 rexbii zVzxyVxzP0=xP1=zP2=yIF0=xzIF1=zyzVyVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zy
8 rexcom zVyVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zyyVzVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zy
9 df-3an yxyzzxP0=xP1=zP2=yIF0=xzIF1=zyyxyzzxP0=xP1=zP2=yIF0=xzIF1=zy
10 anass yxyzzxP0=xP1=zP2=yIF0=xzIF1=zyyxyzzxP0=xP1=zP2=yIF0=xzIF1=zy
11 anass zxzyyxP0=xP1=zP2=yIF0=xzIF1=zyzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
12 anass yxyzzxyxyzzx
13 ancom yxyzzxyzzxyx
14 necom yzzy
15 14 anbi2ci yzzxzxzy
16 15 anbi1i yzzxyxzxzyyx
17 12 13 16 3bitri yxyzzxzxzyyx
18 17 anbi1i yxyzzxP0=xP1=zP2=yIF0=xzIF1=zyzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
19 df-3an zxzyyxP0=xP1=zP2=yIF0=xzIF1=zyzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
20 11 18 19 3bitr4i yxyzzxP0=xP1=zP2=yIF0=xzIF1=zyzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
21 9 10 20 3bitr2i yxyzzxP0=xP1=zP2=yIF0=xzIF1=zyzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
22 21 rexbii zVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zyzVzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
23 rexdifpr zVxyyxP0=xP1=zP2=yIF0=xzIF1=zyzVzxzyyxP0=xP1=zP2=yIF0=xzIF1=zy
24 r19.42v zVxyyxP0=xP1=zP2=yIF0=xzIF1=zyyxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
25 22 23 24 3bitr2i zVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zyyxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
26 25 rexbii yVzVyxyzzxP0=xP1=zP2=yIF0=xzIF1=zyyVyxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
27 7 8 26 3bitri zVzxyVxzP0=xP1=zP2=yIF0=xzIF1=zyyVyxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
28 rexdifsn zVxyVxzP0=xP1=zP2=yIF0=xzIF1=zyzVzxyVxzP0=xP1=zP2=yIF0=xzIF1=zy
29 rexdifsn yVxzVxyP0=xP1=zP2=yIF0=xzIF1=zyyVyxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
30 27 28 29 3bitr4i zVxyVxzP0=xP1=zP2=yIF0=xzIF1=zyyVxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
31 30 a1i GUSGraphxVzVxyVxzP0=xP1=zP2=yIF0=xzIF1=zyyVxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
32 31 rexbidva GUSGraphxVzVxyVxzP0=xP1=zP2=yIF0=xzIF1=zyxVyVxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
33 32 3anbi3d GUSGraphF:0..^21-1domIP:021-1VxVzVxyVxzP0=xP1=zP2=yIF0=xzIF1=zyF:0..^21-1domIP:021-1VxVyVxzVxyP0=xP1=zP2=yIF0=xzIF1=zy
34 3 33 bitrd GUSGraphFPathsGPF=2F:0..^21-1domIP:021-1VxVyVxzVxyP0=xP1=zP2=yIF0=xzIF1=zy