| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgr2pthlem.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
usgr2pthlem.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
1 2
|
usgr2pth |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 4 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 5 |
|
rexdifpr |
⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 6 |
4 5
|
bitr3i |
⊢ ( ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 7 |
6
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑧 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 8 |
|
rexcom |
⊢ ( ∃ 𝑧 ∈ 𝑉 ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 9 |
|
df-3an |
⊢ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 10 |
|
anass |
⊢ ( ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 11 |
|
anass |
⊢ ( ( ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 12 |
|
anass |
⊢ ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ↔ ( 𝑦 ≠ 𝑥 ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ) ) |
| 13 |
|
ancom |
⊢ ( ( 𝑦 ≠ 𝑥 ∧ ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ) ↔ ( ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ∧ 𝑦 ≠ 𝑥 ) ) |
| 14 |
|
necom |
⊢ ( 𝑦 ≠ 𝑧 ↔ 𝑧 ≠ 𝑦 ) |
| 15 |
14
|
anbi2ci |
⊢ ( ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ) |
| 16 |
15
|
anbi1i |
⊢ ( ( ( 𝑦 ≠ 𝑧 ∧ 𝑧 ≠ 𝑥 ) ∧ 𝑦 ≠ 𝑥 ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ) |
| 17 |
12 13 16
|
3bitri |
⊢ ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ) |
| 18 |
17
|
anbi1i |
⊢ ( ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ 𝑦 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 19 |
|
df-3an |
⊢ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ) ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 20 |
11 18 19
|
3bitr4i |
⊢ ( ( ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ) ∧ 𝑧 ≠ 𝑥 ) ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 21 |
9 10 20
|
3bitr2i |
⊢ ( ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 22 |
21
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 23 |
|
rexdifpr |
⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 24 |
|
r19.42v |
⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( 𝑦 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 25 |
22 23 24
|
3bitr2i |
⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 26 |
25
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑉 ∃ 𝑧 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ 𝑦 ≠ 𝑧 ∧ ( 𝑧 ≠ 𝑥 ∧ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 27 |
7 8 26
|
3bitri |
⊢ ( ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 28 |
|
rexdifsn |
⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑧 ∈ 𝑉 ( 𝑧 ≠ 𝑥 ∧ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 29 |
|
rexdifsn |
⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑦 ∈ 𝑉 ( 𝑦 ≠ 𝑥 ∧ ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 30 |
27 28 29
|
3bitr4i |
⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) |
| 31 |
30
|
a1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ 𝑉 ) → ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 32 |
31
|
rexbidva |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ↔ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) |
| 33 |
32
|
3anbi3d |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 , 𝑧 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |
| 34 |
3 33
|
bitrd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑧 ∧ ( 𝑃 ‘ 2 ) = 𝑦 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑧 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑧 , 𝑦 } ) ) ) ) ) |