| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgr2pthlem.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
usgr2pthlem.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
usgr2pthspth |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
| 4 |
|
usgrupgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UPGraph ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐺 ∈ UPGraph ) |
| 6 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) ) |
| 8 |
1 2
|
upgrf1istrl |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 9 |
8
|
anbi1d |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 10 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) ) |
| 11 |
|
f1eq2 |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 13 |
12
|
biimpd |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 15 |
14
|
com12 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 17 |
16
|
ad2antrl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ) |
| 18 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 2 ) ) |
| 19 |
18
|
feq2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) ) |
| 20 |
|
df-f1 |
⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ↔ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) |
| 21 |
20
|
simplbi2 |
⊢ ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
| 22 |
21
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 23 |
19 22
|
sylbid |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 25 |
24
|
com3l |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( Fun ◡ 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 26 |
25
|
3ad2ant2 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( Fun ◡ 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ) |
| 29 |
1 2
|
usgr2pthlem |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 30 |
29
|
ad2antrl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) |
| 31 |
17 28 30
|
3jcad |
⊢ ( ( 𝐺 ∈ UPGraph ∧ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 32 |
31
|
ex |
⊢ ( 𝐺 ∈ UPGraph → ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 33 |
9 32
|
sylbid |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 34 |
7 33
|
sylbid |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 35 |
34
|
com23 |
⊢ ( 𝐺 ∈ UPGraph → ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 36 |
5 35
|
mpcom |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 37 |
3 36
|
sylbid |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 38 |
37
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) ) |
| 39 |
38
|
impcomd |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |
| 40 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 41 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ 2 ) ⟶ dom 𝐼 ) |
| 42 |
|
fnfzo0hash |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝐹 : ( 0 ..^ 2 ) ⟶ dom 𝐼 ) → ( ♯ ‘ 𝐹 ) = 2 ) |
| 43 |
40 41 42
|
sylancr |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( ♯ ‘ 𝐹 ) = 2 ) |
| 44 |
|
oveq2 |
⊢ ( 2 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 45 |
44
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 46 |
|
f1eq2 |
⊢ ( ( 0 ..^ 2 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ↔ 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 48 |
47
|
biimpd |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) ) |
| 49 |
48
|
imp |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 52 |
|
f1f |
⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ) |
| 53 |
|
oveq2 |
⊢ ( 2 = ( ♯ ‘ 𝐹 ) → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 54 |
53
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 55 |
54
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 0 ... 2 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 56 |
55
|
feq2d |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 𝑃 : ( 0 ... 2 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 57 |
52 56
|
imbitrid |
⊢ ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 58 |
57
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 60 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 0 ) = 𝑥 ↔ 𝑥 = ( 𝑃 ‘ 0 ) ) |
| 61 |
60
|
biimpi |
⊢ ( ( 𝑃 ‘ 0 ) = 𝑥 → 𝑥 = ( 𝑃 ‘ 0 ) ) |
| 62 |
61
|
3ad2ant1 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑥 = ( 𝑃 ‘ 0 ) ) |
| 63 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 1 ) = 𝑦 ↔ 𝑦 = ( 𝑃 ‘ 1 ) ) |
| 64 |
63
|
biimpi |
⊢ ( ( 𝑃 ‘ 1 ) = 𝑦 → 𝑦 = ( 𝑃 ‘ 1 ) ) |
| 65 |
64
|
3ad2ant2 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑦 = ( 𝑃 ‘ 1 ) ) |
| 66 |
62 65
|
preq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → { 𝑥 , 𝑦 } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 67 |
66
|
eqeq2d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 68 |
67
|
biimpcd |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) ) |
| 70 |
69
|
impcom |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 71 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 2 ) = 𝑧 ↔ 𝑧 = ( 𝑃 ‘ 2 ) ) |
| 72 |
71
|
biimpi |
⊢ ( ( 𝑃 ‘ 2 ) = 𝑧 → 𝑧 = ( 𝑃 ‘ 2 ) ) |
| 73 |
72
|
3ad2ant3 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → 𝑧 = ( 𝑃 ‘ 2 ) ) |
| 74 |
65 73
|
preq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → { 𝑦 , 𝑧 } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 75 |
74
|
eqeq2d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 76 |
75
|
biimpcd |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 77 |
76
|
adantl |
⊢ ( ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) → ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 78 |
77
|
impcom |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 79 |
70 78
|
jca |
⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 80 |
79
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 81 |
80
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 82 |
81
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 83 |
82
|
a1i13 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 84 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
| 85 |
10 84
|
eqtrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 } ) |
| 86 |
85
|
raleqdv |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 87 |
|
2wlklem |
⊢ ( ∀ 𝑖 ∈ { 0 , 1 } ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) |
| 88 |
86 87
|
bitrdi |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) |
| 89 |
88
|
imbi2d |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ↔ ( 𝐺 ∈ USGraph → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) ) ) ) |
| 90 |
83 89
|
sylibrd |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 91 |
90
|
ad2antrr |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) ) |
| 92 |
91
|
imp |
⊢ ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 93 |
92
|
imp |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
| 94 |
51 59 93
|
3jca |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
| 95 |
20
|
simprbi |
⊢ ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → Fun ◡ 𝑃 ) |
| 96 |
95
|
adantl |
⊢ ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) → Fun ◡ 𝑃 ) |
| 97 |
96
|
ad2antrr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → Fun ◡ 𝑃 ) |
| 98 |
94 97
|
jca |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) |
| 99 |
7 9
|
bitrd |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 100 |
4 99
|
syl |
⊢ ( 𝐺 ∈ USGraph → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 101 |
100
|
adantl |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ Fun ◡ 𝑃 ) ) ) |
| 102 |
98 101
|
mpbird |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |
| 103 |
|
simpr |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ USGraph ) |
| 104 |
|
simp-4l |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( ♯ ‘ 𝐹 ) = 2 ) |
| 105 |
103 104 3
|
syl2anc |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) ) |
| 106 |
102 105
|
mpbird |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
| 107 |
106 104
|
jca |
⊢ ( ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ∧ 𝐺 ∈ USGraph ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) |
| 108 |
107
|
ex |
⊢ ( ( ( ( ( ♯ ‘ 𝐹 ) = 2 ∧ 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ) ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ) ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
| 109 |
108
|
exp41 |
⊢ ( ( ♯ ‘ 𝐹 ) = 2 → ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) ) ) ) |
| 110 |
43 109
|
mpcom |
⊢ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 → ( 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) ) ) |
| 111 |
110
|
3imp |
⊢ ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐺 ∈ USGraph → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
| 112 |
111
|
com12 |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) → ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ) ) |
| 113 |
39 112
|
impbid |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ∧ ( ♯ ‘ 𝐹 ) = 2 ) ↔ ( 𝐹 : ( 0 ..^ 2 ) –1-1→ dom 𝐼 ∧ 𝑃 : ( 0 ... 2 ) –1-1→ 𝑉 ∧ ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ ( 𝑉 ∖ { 𝑥 } ) ∃ 𝑧 ∈ ( 𝑉 ∖ { 𝑥 , 𝑦 } ) ( ( ( 𝑃 ‘ 0 ) = 𝑥 ∧ ( 𝑃 ‘ 1 ) = 𝑦 ∧ ( 𝑃 ‘ 2 ) = 𝑧 ) ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑥 , 𝑦 } ∧ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = { 𝑦 , 𝑧 } ) ) ) ) ) |