Metamath Proof Explorer


Theorem usgredg2vlem1

Description: Lemma 1 for usgredg2v . (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020)

Ref Expression
Hypotheses usgredg2v.v V=VtxG
usgredg2v.e E=iEdgG
usgredg2v.a A=xdomE|NEx
Assertion usgredg2vlem1 GUSGraphYAιzV|EY=zNV

Proof

Step Hyp Ref Expression
1 usgredg2v.v V=VtxG
2 usgredg2v.e E=iEdgG
3 usgredg2v.a A=xdomE|NEx
4 fveq2 x=YEx=EY
5 4 eleq2d x=YNExNEY
6 5 3 elrab2 YAYdomENEY
7 1 2 usgredgreu GUSGraphYdomENEY∃!zVEY=Nz
8 prcom Nz=zN
9 8 eqeq2i EY=NzEY=zN
10 9 reubii ∃!zVEY=Nz∃!zVEY=zN
11 7 10 sylib GUSGraphYdomENEY∃!zVEY=zN
12 11 3expb GUSGraphYdomENEY∃!zVEY=zN
13 riotacl ∃!zVEY=zNιzV|EY=zNV
14 12 13 syl GUSGraphYdomENEYιzV|EY=zNV
15 6 14 sylan2b GUSGraphYAιzV|EY=zNV