Metamath Proof Explorer


Theorem usgrspan

Description: A spanning subgraph S of a simple graph G is a simple graph. (Contributed by AV, 15-Oct-2020) (Revised by AV, 16-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V=VtxG
uhgrspan.e E=iEdgG
uhgrspan.s φSW
uhgrspan.q φVtxS=V
uhgrspan.r φiEdgS=EA
usgrspan.g φGUSGraph
Assertion usgrspan φSUSGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V=VtxG
2 uhgrspan.e E=iEdgG
3 uhgrspan.s φSW
4 uhgrspan.q φVtxS=V
5 uhgrspan.r φiEdgS=EA
6 usgrspan.g φGUSGraph
7 usgruhgr GUSGraphGUHGraph
8 6 7 syl φGUHGraph
9 1 2 3 4 5 8 uhgrspansubgr φSSubGraphG
10 subusgr GUSGraphSSubGraphGSUSGraph
11 6 9 10 syl2anc φSUSGraph