Metamath Proof Explorer


Theorem usgruspgr

Description: A simple graph is a simple pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion usgruspgr GUSGraphGUSHGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 isusgr GUSGraphGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
4 2re 2
5 4 eqlei2 x=2x2
6 5 a1i x𝒫VtxGx=2x2
7 6 ss2rabi x𝒫VtxG|x=2x𝒫VtxG|x2
8 f1ss iEdgG:domiEdgG1-1x𝒫VtxG|x=2x𝒫VtxG|x=2x𝒫VtxG|x2iEdgG:domiEdgG1-1x𝒫VtxG|x2
9 7 8 mpan2 iEdgG:domiEdgG1-1x𝒫VtxG|x=2iEdgG:domiEdgG1-1x𝒫VtxG|x2
10 3 9 syl6bi GUSGraphGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
11 1 2 isuspgr GUSGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
12 10 11 sylibrd GUSGraphGUSGraphGUSHGraph
13 12 pm2.43i GUSGraphGUSHGraph