Metamath Proof Explorer


Theorem ushgrun

Description: The union U of two (undirected) simple hypergraphs G and H with the same vertex set V is a (not necessarily simple) hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses ushgrun.g φGUSHGraph
ushgrun.h φHUSHGraph
ushgrun.e E=iEdgG
ushgrun.f F=iEdgH
ushgrun.vg V=VtxG
ushgrun.vh φVtxH=V
ushgrun.i φdomEdomF=
ushgrun.u φUW
ushgrun.v φVtxU=V
ushgrun.un φiEdgU=EF
Assertion ushgrun φUUHGraph

Proof

Step Hyp Ref Expression
1 ushgrun.g φGUSHGraph
2 ushgrun.h φHUSHGraph
3 ushgrun.e E=iEdgG
4 ushgrun.f F=iEdgH
5 ushgrun.vg V=VtxG
6 ushgrun.vh φVtxH=V
7 ushgrun.i φdomEdomF=
8 ushgrun.u φUW
9 ushgrun.v φVtxU=V
10 ushgrun.un φiEdgU=EF
11 ushgruhgr GUSHGraphGUHGraph
12 1 11 syl φGUHGraph
13 ushgruhgr HUSHGraphHUHGraph
14 2 13 syl φHUHGraph
15 12 14 3 4 5 6 7 8 9 10 uhgrun φUUHGraph