Metamath Proof Explorer


Theorem uspgrbispr

Description: There is a bijection between the "simple pseudographs" with a fixed set of vertices V and the subsets of the set of pairs over the set V . (Contributed by AV, 26-Nov-2021)

Ref Expression
Hypotheses uspgrsprf.p P=𝒫PairsV
uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
Assertion uspgrbispr VWff:G1-1 ontoP

Proof

Step Hyp Ref Expression
1 uspgrsprf.p P=𝒫PairsV
2 uspgrsprf.g G=ve|v=VqUSHGraphVtxq=vEdgq=e
3 1 2 uspgrex VWGV
4 3 mptexd VWgG2ndgV
5 eqid gG2ndg=gG2ndg
6 1 2 5 uspgrsprf1o VWgG2ndg:G1-1 ontoP
7 f1oeq1 f=gG2ndgf:G1-1 ontoPgG2ndg:G1-1 ontoP
8 4 6 7 spcedv VWff:G1-1 ontoP