Metamath Proof Explorer


Theorem uztrn

Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005)

Ref Expression
Assertion uztrn MKKNMN

Proof

Step Hyp Ref Expression
1 eluzel2 KNN
2 1 adantl MKKNN
3 eluzelz MKM
4 3 adantr MKKNM
5 eluzle KNNK
6 5 adantl MKKNNK
7 eluzle MKKM
8 7 adantr MKKNKM
9 eluzelz KNK
10 zletr NKMNKKMNM
11 1 9 4 10 syl2an23an MKKNNKKMNM
12 6 8 11 mp2and MKKNNM
13 eluz2 MNNMNM
14 2 4 12 13 syl3anbrc MKKNMN