Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
uztrn2
Next ⟩
uzneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
uztrn2
Description:
Transitive law for sets of upper integers.
(Contributed by
Mario Carneiro
, 26-Dec-2013)
Ref
Expression
Hypothesis
uztrn2.1
⊢
Z
=
ℤ
≥
K
Assertion
uztrn2
⊢
N
∈
Z
∧
M
∈
ℤ
≥
N
→
M
∈
Z
Proof
Step
Hyp
Ref
Expression
1
uztrn2.1
⊢
Z
=
ℤ
≥
K
2
1
eleq2i
⊢
N
∈
Z
↔
N
∈
ℤ
≥
K
3
uztrn
⊢
M
∈
ℤ
≥
N
∧
N
∈
ℤ
≥
K
→
M
∈
ℤ
≥
K
4
3
ancoms
⊢
N
∈
ℤ
≥
K
∧
M
∈
ℤ
≥
N
→
M
∈
ℤ
≥
K
5
2
4
sylanb
⊢
N
∈
Z
∧
M
∈
ℤ
≥
N
→
M
∈
ℤ
≥
K
6
5
1
eleqtrrdi
⊢
N
∈
Z
∧
M
∈
ℤ
≥
N
→
M
∈
Z