Metamath Proof Explorer


Theorem vdumgr0

Description: A vertex in a multigraph has degree 0 if the graph consists of only one vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypothesis vdumgr0.v V=VtxG
Assertion vdumgr0 GUMGraphNVV=1VtxDegGN=0

Proof

Step Hyp Ref Expression
1 vdumgr0.v V=VtxG
2 umgruhgr GUMGraphGUHGraph
3 2 3ad2ant1 GUMGraphNVV=1GUHGraph
4 simp3 GUMGraphNVV=1V=1
5 eqid iEdgG=iEdgG
6 1 5 umgrislfupgr GUMGraphGUPGraphiEdgG:domiEdgGx𝒫V|2x
7 6 simprbi GUMGraphiEdgG:domiEdgGx𝒫V|2x
8 7 3ad2ant1 GUMGraphNVV=1iEdgG:domiEdgGx𝒫V|2x
9 3 4 8 3jca GUMGraphNVV=1GUHGraphV=1iEdgG:domiEdgGx𝒫V|2x
10 simp2 GUMGraphNVV=1NV
11 eqid x𝒫V|2x=x𝒫V|2x
12 1 5 11 vtxdlfuhgr1v GUHGraphV=1iEdgG:domiEdgGx𝒫V|2xNVVtxDegGN=0
13 9 10 12 sylc GUMGraphNVV=1VtxDegGN=0