Metamath Proof Explorer


Theorem vtxdg0v

Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020)

Ref Expression
Hypothesis vtxdgf.v V=VtxG
Assertion vtxdg0v G=UVVtxDegGU=0

Proof

Step Hyp Ref Expression
1 vtxdgf.v V=VtxG
2 1 eleq2i UVUVtxG
3 fveq2 G=VtxG=Vtx
4 vtxval0 Vtx=
5 3 4 eqtrdi G=VtxG=
6 5 eleq2d G=UVtxGU
7 2 6 bitrid G=UVU
8 noel ¬U
9 8 pm2.21i UVtxDegGU=0
10 7 9 syl6bi G=UVVtxDegGU=0
11 10 imp G=UVVtxDegGU=0