Metamath Proof Explorer


Theorem vtxdushgrfvedg

Description: The value of the vertex degree function for a simple hypergraph. (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)

Ref Expression
Hypotheses vtxdushgrfvedg.v V = Vtx G
vtxdushgrfvedg.e E = Edg G
vtxdushgrfvedg.d D = VtxDeg G
Assertion vtxdushgrfvedg G USHGraph U V D U = e E | U e + 𝑒 e E | e = U

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V = Vtx G
2 vtxdushgrfvedg.e E = Edg G
3 vtxdushgrfvedg.d D = VtxDeg G
4 3 fveq1i D U = VtxDeg G U
5 4 a1i G USHGraph U V D U = VtxDeg G U
6 eqid iEdg G = iEdg G
7 eqid dom iEdg G = dom iEdg G
8 1 6 7 vtxdgval U V VtxDeg G U = i dom iEdg G | U iEdg G i + 𝑒 i dom iEdg G | iEdg G i = U
9 8 adantl G USHGraph U V VtxDeg G U = i dom iEdg G | U iEdg G i + 𝑒 i dom iEdg G | iEdg G i = U
10 1 2 vtxdushgrfvedglem G USHGraph U V i dom iEdg G | U iEdg G i = e E | U e
11 fvex iEdg G V
12 11 dmex dom iEdg G V
13 12 rabex i dom iEdg G | iEdg G i = U V
14 13 a1i G USHGraph U V i dom iEdg G | iEdg G i = U V
15 eqid i dom iEdg G | iEdg G i = U = i dom iEdg G | iEdg G i = U
16 eqeq1 e = c e = U c = U
17 16 cbvrabv e E | e = U = c E | c = U
18 eqid x i dom iEdg G | iEdg G i = U iEdg G x = x i dom iEdg G | iEdg G i = U iEdg G x
19 2 6 15 17 18 ushgredgedgloop G USHGraph U V x i dom iEdg G | iEdg G i = U iEdg G x : i dom iEdg G | iEdg G i = U 1-1 onto e E | e = U
20 14 19 hasheqf1od G USHGraph U V i dom iEdg G | iEdg G i = U = e E | e = U
21 10 20 oveq12d G USHGraph U V i dom iEdg G | U iEdg G i + 𝑒 i dom iEdg G | iEdg G i = U = e E | U e + 𝑒 e E | e = U
22 5 9 21 3eqtrd G USHGraph U V D U = e E | U e + 𝑒 e E | e = U