Metamath Proof Explorer


Theorem vtxval

Description: The set of vertices of a graph. (Contributed by AV, 9-Jan-2020) (Revised by AV, 21-Sep-2020)

Ref Expression
Assertion vtxval VtxG=ifGV×V1stGBaseG

Proof

Step Hyp Ref Expression
1 eleq1 g=GgV×VGV×V
2 fveq2 g=G1stg=1stG
3 fveq2 g=GBaseg=BaseG
4 1 2 3 ifbieq12d g=GifgV×V1stgBaseg=ifGV×V1stGBaseG
5 df-vtx Vtx=gVifgV×V1stgBaseg
6 fvex 1stGV
7 fvex BaseGV
8 6 7 ifex ifGV×V1stGBaseGV
9 4 5 8 fvmpt GVVtxG=ifGV×V1stGBaseG
10 fvprc ¬GVBaseG=
11 prcnel ¬GV¬GV×V
12 11 iffalsed ¬GVifGV×V1stGBaseG=BaseG
13 fvprc ¬GVVtxG=
14 10 12 13 3eqtr4rd ¬GVVtxG=ifGV×V1stGBaseG
15 9 14 pm2.61i VtxG=ifGV×V1stGBaseG