Metamath Proof Explorer


Theorem weiunlem1

Description: Lemma for weiunpo , weiunso , weiunfr , and weiunse . (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Hypothesis weiunlem1.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
Assertion weiunlem1 R We A R Se A F : x A B A w x A B w F w / x B w x A B v A w v / x B ¬ v R F w

Proof

Step Hyp Ref Expression
1 weiunlem1.1 F = w x A B ι u x A | w B | v x A | w B ¬ v R u
2 ssrab2 x A | w B A
3 eliun w x A B x A w B
4 rabn0 x A | w B x A w B
5 3 4 sylbb2 w x A B x A | w B
6 wereu2 R We A R Se A x A | w B A x A | w B ∃! u x A | w B v x A | w B ¬ v R u
7 2 6 mpanr1 R We A R Se A x A | w B ∃! u x A | w B v x A | w B ¬ v R u
8 5 7 sylan2 R We A R Se A w x A B ∃! u x A | w B v x A | w B ¬ v R u
9 riotacl ∃! u x A | w B v x A | w B ¬ v R u ι u x A | w B | v x A | w B ¬ v R u x A | w B
10 8 9 syl R We A R Se A w x A B ι u x A | w B | v x A | w B ¬ v R u x A | w B
11 2 10 sselid R We A R Se A w x A B ι u x A | w B | v x A | w B ¬ v R u A
12 11 1 fmptd R We A R Se A F : x A B A
13 simpr R We A R Se A w x A B w x A B
14 1 fvmpt2 w x A B ι u x A | w B | v x A | w B ¬ v R u x A | w B F w = ι u x A | w B | v x A | w B ¬ v R u
15 13 10 14 syl2anc R We A R Se A w x A B F w = ι u x A | w B | v x A | w B ¬ v R u
16 15 10 eqeltrd R We A R Se A w x A B F w x A | w B
17 nfcv _ x A
18 17 elrabsf F w x A | w B F w A [˙ F w / x]˙ w B
19 16 18 sylib R We A R Se A w x A B F w A [˙ F w / x]˙ w B
20 19 simprd R We A R Se A w x A B [˙ F w / x]˙ w B
21 sbcel2 [˙ F w / x]˙ w B w F w / x B
22 20 21 sylib R We A R Se A w x A B w F w / x B
23 22 ralrimiva R We A R Se A w x A B w F w / x B
24 15 eqcomd R We A R Se A w x A B ι u x A | w B | v x A | w B ¬ v R u = F w
25 nfcv _ u x A B
26 nfriota1 _ u ι u x A | w B | v x A | w B ¬ v R u
27 25 26 nfmpt _ u w x A B ι u x A | w B | v x A | w B ¬ v R u
28 1 27 nfcxfr _ u F
29 nfcv _ u w
30 28 29 nffv _ u F w
31 nfcv _ u x A | w B
32 nfcv _ u v
33 nfcv _ u R
34 32 33 30 nfbr u v R F w
35 34 nfn u ¬ v R F w
36 31 35 nfralw u v x A | w B ¬ v R F w
37 nfcv _ v x A B
38 nfra1 v v x A | w B ¬ v R u
39 nfcv _ v x A | w B
40 38 39 nfriota _ v ι u x A | w B | v x A | w B ¬ v R u
41 37 40 nfmpt _ v w x A B ι u x A | w B | v x A | w B ¬ v R u
42 1 41 nfcxfr _ v F
43 nfcv _ v w
44 42 43 nffv _ v F w
45 44 nfeq2 v u = F w
46 breq2 u = F w v R u v R F w
47 46 notbid u = F w ¬ v R u ¬ v R F w
48 45 47 ralbid u = F w v x A | w B ¬ v R u v x A | w B ¬ v R F w
49 30 36 48 riota2f F w x A | w B ∃! u x A | w B v x A | w B ¬ v R u v x A | w B ¬ v R F w ι u x A | w B | v x A | w B ¬ v R u = F w
50 16 8 49 syl2anc R We A R Se A w x A B v x A | w B ¬ v R F w ι u x A | w B | v x A | w B ¬ v R u = F w
51 24 50 mpbird R We A R Se A w x A B v x A | w B ¬ v R F w
52 17 elrabsf v x A | w B v A [˙v / x]˙ w B
53 sbcel2 [˙v / x]˙ w B w v / x B
54 53 anbi2i v A [˙v / x]˙ w B v A w v / x B
55 52 54 bitri v x A | w B v A w v / x B
56 55 imbi1i v x A | w B ¬ v R F w v A w v / x B ¬ v R F w
57 impexp v A w v / x B ¬ v R F w v A w v / x B ¬ v R F w
58 56 57 bitri v x A | w B ¬ v R F w v A w v / x B ¬ v R F w
59 58 ralbii2 v x A | w B ¬ v R F w v A w v / x B ¬ v R F w
60 51 59 sylib R We A R Se A w x A B v A w v / x B ¬ v R F w
61 60 ralrimiva R We A R Se A w x A B v A w v / x B ¬ v R F w
62 12 23 61 3jca R We A R Se A F : x A B A w x A B w F w / x B w x A B v A w v / x B ¬ v R F w