Metamath Proof Explorer


Theorem wemaplem3

Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)

Ref Expression
Hypotheses wemapso.t T=xy|zAxzSyzwAwRzxw=yw
wemaplem2.p φPBA
wemaplem2.x φXBA
wemaplem2.q φQBA
wemaplem2.r φROrA
wemaplem2.s φSPoB
wemaplem3.px φPTX
wemaplem3.xq φXTQ
Assertion wemaplem3 φPTQ

Proof

Step Hyp Ref Expression
1 wemapso.t T=xy|zAxzSyzwAwRzxw=yw
2 wemaplem2.p φPBA
3 wemaplem2.x φXBA
4 wemaplem2.q φQBA
5 wemaplem2.r φROrA
6 wemaplem2.s φSPoB
7 wemaplem3.px φPTX
8 wemaplem3.xq φXTQ
9 1 wemaplem1 PBAXBAPTXaAPaSXacAcRaPc=Xc
10 2 3 9 syl2anc φPTXaAPaSXacAcRaPc=Xc
11 7 10 mpbid φaAPaSXacAcRaPc=Xc
12 1 wemaplem1 XBAQBAXTQbAXbSQbcAcRbXc=Qc
13 3 4 12 syl2anc φXTQbAXbSQbcAcRbXc=Qc
14 8 13 mpbid φbAXbSQbcAcRbXc=Qc
15 2 ad2antrr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcPBA
16 3 ad2antrr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcXBA
17 4 ad2antrr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcQBA
18 5 ad2antrr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcROrA
19 6 ad2antrr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcSPoB
20 simplrl φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcaA
21 simp2rl φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcPaSXa
22 21 3expa φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcPaSXa
23 simprr aAPaSXacAcRaPc=XccAcRaPc=Xc
24 23 ad2antlr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QccAcRaPc=Xc
25 simprl φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcbA
26 simprrl φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcXbSQb
27 simprrr φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QccAcRbXc=Qc
28 1 15 16 17 18 19 20 22 24 25 26 27 wemaplem2 φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcPTQ
29 28 rexlimdvaa φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcPTQ
30 29 rexlimdvaa φaAPaSXacAcRaPc=XcbAXbSQbcAcRbXc=QcPTQ
31 11 14 30 mp2d φPTQ