Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wemapso.t | |
|
wemaplem2.p | |
||
wemaplem2.x | |
||
wemaplem2.q | |
||
wemaplem2.r | |
||
wemaplem2.s | |
||
wemaplem3.px | |
||
wemaplem3.xq | |
||
Assertion | wemaplem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wemapso.t | |
|
2 | wemaplem2.p | |
|
3 | wemaplem2.x | |
|
4 | wemaplem2.q | |
|
5 | wemaplem2.r | |
|
6 | wemaplem2.s | |
|
7 | wemaplem3.px | |
|
8 | wemaplem3.xq | |
|
9 | 1 | wemaplem1 | |
10 | 2 3 9 | syl2anc | |
11 | 7 10 | mpbid | |
12 | 1 | wemaplem1 | |
13 | 3 4 12 | syl2anc | |
14 | 8 13 | mpbid | |
15 | 2 | ad2antrr | |
16 | 3 | ad2antrr | |
17 | 4 | ad2antrr | |
18 | 5 | ad2antrr | |
19 | 6 | ad2antrr | |
20 | simplrl | |
|
21 | simp2rl | |
|
22 | 21 | 3expa | |
23 | simprr | |
|
24 | 23 | ad2antlr | |
25 | simprl | |
|
26 | simprrl | |
|
27 | simprrr | |
|
28 | 1 15 16 17 18 19 20 22 24 25 26 27 | wemaplem2 | |
29 | 28 | rexlimdvaa | |
30 | 29 | rexlimdvaa | |
31 | 11 14 30 | mp2d | |