Metamath Proof Explorer


Theorem wemoiso

Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu . (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion wemoiso RWeA*ffIsomR,SAB

Proof

Step Hyp Ref Expression
1 simpl RWeAfIsomR,SABgIsomR,SABRWeA
2 vex fV
3 isof1o fIsomR,SABf:A1-1 ontoB
4 f1of f:A1-1 ontoBf:AB
5 3 4 syl fIsomR,SABf:AB
6 dmfex fVf:ABAV
7 2 5 6 sylancr fIsomR,SABAV
8 7 ad2antrl RWeAfIsomR,SABgIsomR,SABAV
9 exse AVRSeA
10 8 9 syl RWeAfIsomR,SABgIsomR,SABRSeA
11 1 10 jca RWeAfIsomR,SABgIsomR,SABRWeARSeA
12 weisoeq RWeARSeAfIsomR,SABgIsomR,SABf=g
13 11 12 sylancom RWeAfIsomR,SABgIsomR,SABf=g
14 13 ex RWeAfIsomR,SABgIsomR,SABf=g
15 14 alrimivv RWeAfgfIsomR,SABgIsomR,SABf=g
16 isoeq1 f=gfIsomR,SABgIsomR,SAB
17 16 mo4 *ffIsomR,SABfgfIsomR,SABgIsomR,SABf=g
18 15 17 sylibr RWeA*ffIsomR,SAB