Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu . (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | wemoiso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | vex | |
|
3 | isof1o | |
|
4 | f1of | |
|
5 | 3 4 | syl | |
6 | dmfex | |
|
7 | 2 5 6 | sylancr | |
8 | 7 | ad2antrl | |
9 | exse | |
|
10 | 8 9 | syl | |
11 | 1 10 | jca | |
12 | weisoeq | |
|
13 | 11 12 | sylancom | |
14 | 13 | ex | |
15 | 14 | alrimivv | |
16 | isoeq1 | |
|
17 | 16 | mo4 | |
18 | 15 17 | sylibr | |