Metamath Proof Explorer


Theorem wepwso

Description: A well-ordering induces a strict ordering on the power set.EDITORIAL: when well-orderings are set like, this can be strengthened to remove A e. V . (Contributed by Stefan O'Rear, 18-Jan-2015)

Ref Expression
Hypothesis wepwso.t T=xy|zAzy¬zxwAwRzwxwy
Assertion wepwso AVRWeATOr𝒫A

Proof

Step Hyp Ref Expression
1 wepwso.t T=xy|zAzy¬zxwAwRzwxwy
2 2onn 2𝑜ω
3 nnord 2𝑜ωOrd2𝑜
4 2 3 ax-mp Ord2𝑜
5 ordwe Ord2𝑜EWe2𝑜
6 weso EWe2𝑜EOr2𝑜
7 4 5 6 mp2b EOr2𝑜
8 eqid xy|zAxzEyzwAwRzxw=yw=xy|zAxzEyzwAwRzxw=yw
9 8 wemapso RWeAEOr2𝑜xy|zAxzEyzwAwRzxw=ywOr2𝑜A
10 7 9 mpan2 RWeAxy|zAxzEyzwAwRzxw=ywOr2𝑜A
11 10 adantl AVRWeAxy|zAxzEyzwAwRzxw=ywOr2𝑜A
12 elex AVAV
13 eqid a2𝑜Aa-11𝑜=a2𝑜Aa-11𝑜
14 1 8 13 wepwsolem AVa2𝑜Aa-11𝑜Isomxy|zAxzEyzwAwRzxw=yw,T2𝑜A𝒫A
15 isoso a2𝑜Aa-11𝑜Isomxy|zAxzEyzwAwRzxw=yw,T2𝑜A𝒫Axy|zAxzEyzwAwRzxw=ywOr2𝑜ATOr𝒫A
16 12 14 15 3syl AVxy|zAxzEyzwAwRzxw=ywOr2𝑜ATOr𝒫A
17 16 adantr AVRWeAxy|zAxzEyzwAwRzxw=ywOr2𝑜ATOr𝒫A
18 11 17 mpbid AVRWeATOr𝒫A