Metamath Proof Explorer


Theorem wfaxpow

Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of Kunen2 p. 113. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 W = R1 On
Assertion wfaxpow x W y W z W w W w z w x z y

Proof

Step Hyp Ref Expression
1 wfax.1 W = R1 On
2 trwf Tr R1 On
3 treq W = R1 On Tr W Tr R1 On
4 1 3 ax-mp Tr W Tr R1 On
5 2 4 mpbir Tr W
6 pwclaxpow Tr W x W 𝒫 x W W x W y W z W w W w z w x z y
7 5 6 mpan x W 𝒫 x W W x W y W z W w W w z w x z y
8 pwwf x R1 On 𝒫 x R1 On
9 8 biimpi x R1 On 𝒫 x R1 On
10 r1elssi 𝒫 x R1 On 𝒫 x R1 On
11 dfss2 𝒫 x R1 On 𝒫 x R1 On = 𝒫 x
12 eleq1 𝒫 x R1 On = 𝒫 x 𝒫 x R1 On R1 On 𝒫 x R1 On
13 11 12 sylbi 𝒫 x R1 On 𝒫 x R1 On R1 On 𝒫 x R1 On
14 9 10 13 3syl x R1 On 𝒫 x R1 On R1 On 𝒫 x R1 On
15 9 14 mpbird x R1 On 𝒫 x R1 On R1 On
16 1 eleq2i x W x R1 On
17 1 ineq2i 𝒫 x W = 𝒫 x R1 On
18 17 1 eleq12i 𝒫 x W W 𝒫 x R1 On R1 On
19 15 16 18 3imtr4i x W 𝒫 x W W
20 7 19 mprg x W y W z W w W w z w x z y