Metamath Proof Explorer


Theorem wfaxpow

Description: The class of well-founded sets models the Axioms of Power Sets. Part of Corollary II.2.9 of Kunen2 p. 113. (Contributed by Eric Schmidt, 19-Oct-2025)

Ref Expression
Hypothesis wfax.1 𝑊 = ( 𝑅1 “ On )
Assertion wfaxpow 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∀ 𝑤𝑊 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 wfax.1 𝑊 = ( 𝑅1 “ On )
2 trwf Tr ( 𝑅1 “ On )
3 treq ( 𝑊 = ( 𝑅1 “ On ) → ( Tr 𝑊 ↔ Tr ( 𝑅1 “ On ) ) )
4 1 3 ax-mp ( Tr 𝑊 ↔ Tr ( 𝑅1 “ On ) )
5 2 4 mpbir Tr 𝑊
6 pwclaxpow ( ( Tr 𝑊 ∧ ∀ 𝑥𝑊 ( 𝒫 𝑥𝑊 ) ∈ 𝑊 ) → ∀ 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∀ 𝑤𝑊 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
7 5 6 mpan ( ∀ 𝑥𝑊 ( 𝒫 𝑥𝑊 ) ∈ 𝑊 → ∀ 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∀ 𝑤𝑊 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
8 pwwf ( 𝑥 ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ( 𝑅1 “ On ) )
9 8 biimpi ( 𝑥 ( 𝑅1 “ On ) → 𝒫 𝑥 ( 𝑅1 “ On ) )
10 r1elssi ( 𝒫 𝑥 ( 𝑅1 “ On ) → 𝒫 𝑥 ( 𝑅1 “ On ) )
11 dfss2 ( 𝒫 𝑥 ( 𝑅1 “ On ) ↔ ( 𝒫 𝑥 ( 𝑅1 “ On ) ) = 𝒫 𝑥 )
12 eleq1 ( ( 𝒫 𝑥 ( 𝑅1 “ On ) ) = 𝒫 𝑥 → ( ( 𝒫 𝑥 ( 𝑅1 “ On ) ) ∈ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ( 𝑅1 “ On ) ) )
13 11 12 sylbi ( 𝒫 𝑥 ( 𝑅1 “ On ) → ( ( 𝒫 𝑥 ( 𝑅1 “ On ) ) ∈ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ( 𝑅1 “ On ) ) )
14 9 10 13 3syl ( 𝑥 ( 𝑅1 “ On ) → ( ( 𝒫 𝑥 ( 𝑅1 “ On ) ) ∈ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ( 𝑅1 “ On ) ) )
15 9 14 mpbird ( 𝑥 ( 𝑅1 “ On ) → ( 𝒫 𝑥 ( 𝑅1 “ On ) ) ∈ ( 𝑅1 “ On ) )
16 1 eleq2i ( 𝑥𝑊𝑥 ( 𝑅1 “ On ) )
17 1 ineq2i ( 𝒫 𝑥𝑊 ) = ( 𝒫 𝑥 ( 𝑅1 “ On ) )
18 17 1 eleq12i ( ( 𝒫 𝑥𝑊 ) ∈ 𝑊 ↔ ( 𝒫 𝑥 ( 𝑅1 “ On ) ) ∈ ( 𝑅1 “ On ) )
19 15 16 18 3imtr4i ( 𝑥𝑊 → ( 𝒫 𝑥𝑊 ) ∈ 𝑊 )
20 7 19 mprg 𝑥𝑊𝑦𝑊𝑧𝑊 ( ∀ 𝑤𝑊 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )