| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfax.1 |
⊢ 𝑊 = ∪ ( 𝑅1 “ On ) |
| 2 |
|
trwf |
⊢ Tr ∪ ( 𝑅1 “ On ) |
| 3 |
|
treq |
⊢ ( 𝑊 = ∪ ( 𝑅1 “ On ) → ( Tr 𝑊 ↔ Tr ∪ ( 𝑅1 “ On ) ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( Tr 𝑊 ↔ Tr ∪ ( 𝑅1 “ On ) ) |
| 5 |
2 4
|
mpbir |
⊢ Tr 𝑊 |
| 6 |
|
pwclaxpow |
⊢ ( ( Tr 𝑊 ∧ ∀ 𝑥 ∈ 𝑊 ( 𝒫 𝑥 ∩ 𝑊 ) ∈ 𝑊 ) → ∀ 𝑥 ∈ 𝑊 ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑊 ( ∀ 𝑤 ∈ 𝑊 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 7 |
5 6
|
mpan |
⊢ ( ∀ 𝑥 ∈ 𝑊 ( 𝒫 𝑥 ∩ 𝑊 ) ∈ 𝑊 → ∀ 𝑥 ∈ 𝑊 ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑊 ( ∀ 𝑤 ∈ 𝑊 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 8 |
|
pwwf |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 9 |
8
|
biimpi |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 10 |
|
r1elssi |
⊢ ( 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝑥 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 11 |
|
dfss2 |
⊢ ( 𝒫 𝑥 ⊆ ∪ ( 𝑅1 “ On ) ↔ ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) = 𝒫 𝑥 ) |
| 12 |
|
eleq1 |
⊢ ( ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) = 𝒫 𝑥 → ( ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 13 |
11 12
|
sylbi |
⊢ ( 𝒫 𝑥 ⊆ ∪ ( 𝑅1 “ On ) → ( ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 14 |
9 10 13
|
3syl |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 15 |
9 14
|
mpbird |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 16 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 17 |
1
|
ineq2i |
⊢ ( 𝒫 𝑥 ∩ 𝑊 ) = ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) |
| 18 |
17 1
|
eleq12i |
⊢ ( ( 𝒫 𝑥 ∩ 𝑊 ) ∈ 𝑊 ↔ ( 𝒫 𝑥 ∩ ∪ ( 𝑅1 “ On ) ) ∈ ∪ ( 𝑅1 “ On ) ) |
| 19 |
15 16 18
|
3imtr4i |
⊢ ( 𝑥 ∈ 𝑊 → ( 𝒫 𝑥 ∩ 𝑊 ) ∈ 𝑊 ) |
| 20 |
7 19
|
mprg |
⊢ ∀ 𝑥 ∈ 𝑊 ∃ 𝑦 ∈ 𝑊 ∀ 𝑧 ∈ 𝑊 ( ∀ 𝑤 ∈ 𝑊 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |