Metamath Proof Explorer


Theorem wfrdmssOLD

Description: Obsolete proof of wfrdmss as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6OLD.1 F=wrecsRAG
Assertion wfrdmssOLD domFA

Proof

Step Hyp Ref Expression
1 wfrlem6OLD.1 F=wrecsRAG
2 dfwrecsOLD wrecsRAG=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
3 1 2 eqtri F=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
4 3 dmeqi domF=domf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
5 dmuni domf|xfFnxxAyxPredRAyxyxfy=GfPredRAy=gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
6 4 5 eqtri domF=gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
7 iunss gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomgAgf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomgA
8 eqid f|xfFnxxAyxPredRAyxyxfy=GfPredRAy=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
9 8 wfrlem3OLD gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomgA
10 7 9 mprgbir gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomgA
11 6 10 eqsstri domFA