Metamath Proof Explorer


Theorem wfrlem8OLD

Description: Lemma for well-ordered recursion. Compute the prececessor class for an R minimal element of ( A \ dom F ) . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6OLD.1 F=wrecsRAG
Assertion wfrlem8OLD PredRAdomFX=PredRAX=PredRdomFX

Proof

Step Hyp Ref Expression
1 wfrlem6OLD.1 F=wrecsRAG
2 1 wfrdmssOLD domFA
3 predpredss domFAPredRdomFXPredRAX
4 2 3 ax-mp PredRdomFXPredRAX
5 4 biantru PredRAXPredRdomFXPredRAXPredRdomFXPredRdomFXPredRAX
6 preddif PredRAdomFX=PredRAXPredRdomFX
7 6 eqeq1i PredRAdomFX=PredRAXPredRdomFX=
8 ssdif0 PredRAXPredRdomFXPredRAXPredRdomFX=
9 7 8 bitr4i PredRAdomFX=PredRAXPredRdomFX
10 eqss PredRAX=PredRdomFXPredRAXPredRdomFXPredRdomFXPredRAX
11 5 9 10 3bitr4i PredRAdomFX=PredRAX=PredRdomFX