Metamath Proof Explorer


Theorem wfrdmclOLD

Description: Obsolete proof of wfrdmcl as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6OLD.1 F=wrecsRAG
Assertion wfrdmclOLD XdomFPredRAXdomF

Proof

Step Hyp Ref Expression
1 wfrlem6OLD.1 F=wrecsRAG
2 dfwrecsOLD wrecsRAG=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
3 1 2 eqtri F=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
4 3 dmeqi domF=domf|xfFnxxAyxPredRAyxyxfy=GfPredRAy
5 dmuni domf|xfFnxxAyxPredRAyxyxfy=GfPredRAy=gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
6 4 5 eqtri domF=gf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
7 6 eleq2i XdomFXgf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
8 eliun Xgf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomggf|xfFnxxAyxPredRAyxyxfy=GfPredRAyXdomg
9 7 8 bitri XdomFgf|xfFnxxAyxPredRAyxyxfy=GfPredRAyXdomg
10 eqid f|xfFnxxAyxPredRAyxyxfy=GfPredRAy=f|xfFnxxAyxPredRAyxyxfy=GfPredRAy
11 10 wfrlem1OLD f|xfFnxxAyxPredRAyxyxfy=GfPredRAy=g|zgFnzzAwzPredRAwzwzgw=GgPredRAw
12 11 eqabri gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyzgFnzzAwzPredRAwzwzgw=GgPredRAw
13 predeq3 w=XPredRAw=PredRAX
14 13 sseq1d w=XPredRAwzPredRAXz
15 14 rspccv wzPredRAwzXzPredRAXz
16 15 adantl gFnzwzPredRAwzXzPredRAXz
17 fndm gFnzdomg=z
18 17 eleq2d gFnzXdomgXz
19 17 sseq2d gFnzPredRAXdomgPredRAXz
20 18 19 imbi12d gFnzXdomgPredRAXdomgXzPredRAXz
21 20 adantr gFnzwzPredRAwzXdomgPredRAXdomgXzPredRAXz
22 16 21 mpbird gFnzwzPredRAwzXdomgPredRAXdomg
23 22 adantrl gFnzzAwzPredRAwzXdomgPredRAXdomg
24 23 3adant3 gFnzzAwzPredRAwzwzgw=GgPredRAwXdomgPredRAXdomg
25 24 exlimiv zgFnzzAwzPredRAwzwzgw=GgPredRAwXdomgPredRAXdomg
26 12 25 sylbi gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyXdomgPredRAXdomg
27 26 reximia gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyXdomggf|xfFnxxAyxPredRAyxyxfy=GfPredRAyPredRAXdomg
28 ssiun gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyPredRAXdomgPredRAXgf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
29 27 28 syl gf|xfFnxxAyxPredRAyxyxfy=GfPredRAyXdomgPredRAXgf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
30 9 29 sylbi XdomFPredRAXgf|xfFnxxAyxPredRAyxyxfy=GfPredRAydomg
31 30 6 sseqtrrdi XdomFPredRAXdomF