Metamath Proof Explorer


Theorem wfrlem3OLD

Description: Lemma for well-ordered recursion. An acceptable function's domain is a subset of A . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
Assertion wfrlem3OLD gBdomgA

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
2 1 wfrlem1OLD B=g|zgFnzzAwzPredRAwzwzgw=FgPredRAw
3 2 eqabri gBzgFnzzAwzPredRAwzwzgw=FgPredRAw
4 fndm gFnzdomg=z
5 4 sseq1d gFnzdomgAzA
6 5 biimpar gFnzzAdomgA
7 6 adantrr gFnzzAwzPredRAwzdomgA
8 7 3adant3 gFnzzAwzPredRAwzwzgw=FgPredRAwdomgA
9 8 exlimiv zgFnzzAwzPredRAwzwzgw=FgPredRAwdomgA
10 3 9 sylbi gBdomgA