Metamath Proof Explorer


Theorem wfrlem3OLD

Description: Lemma for well-ordered recursion. An acceptable function's domain is a subset of A . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1OLD.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
Assertion wfrlem3OLD g B dom g A

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
2 1 wfrlem1OLD B = g | z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
3 2 abeq2i g B z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
4 fndm g Fn z dom g = z
5 4 sseq1d g Fn z dom g A z A
6 5 biimpar g Fn z z A dom g A
7 6 adantrr g Fn z z A w z Pred R A w z dom g A
8 7 3adant3 g Fn z z A w z Pred R A w z w z g w = F g Pred R A w dom g A
9 8 exlimiv z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w dom g A
10 3 9 sylbi g B dom g A