Metamath Proof Explorer


Theorem wfrlem2OLD

Description: Lemma for well-ordered recursion. An acceptable function is a function. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
Assertion wfrlem2OLD gBFung

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B=f|xfFnxxAyxPredRAyxyxfy=FfPredRAy
2 1 wfrlem1OLD B=g|zgFnzzAwzPredRAwzwzgw=FgPredRAw
3 2 eqabri gBzgFnzzAwzPredRAwzwzgw=FgPredRAw
4 fnfun gFnzFung
5 4 3ad2ant1 gFnzzAwzPredRAwzwzgw=FgPredRAwFung
6 5 exlimiv zgFnzzAwzPredRAwzwzgw=FgPredRAwFung
7 3 6 sylbi gBFung