Metamath Proof Explorer


Theorem wfrlem2OLD

Description: Lemma for well-ordered recursion. An acceptable function is a function. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem1OLD.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
Assertion wfrlem2OLD g B Fun g

Proof

Step Hyp Ref Expression
1 wfrlem1OLD.1 B = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
2 1 wfrlem1OLD B = g | z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
3 2 abeq2i g B z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w
4 fnfun g Fn z Fun g
5 4 3ad2ant1 g Fn z z A w z Pred R A w z w z g w = F g Pred R A w Fun g
6 5 exlimiv z g Fn z z A w z Pred R A w z w z g w = F g Pred R A w Fun g
7 3 6 sylbi g B Fun g