Metamath Proof Explorer


Theorem wfrlem8OLD

Description: Lemma for well-ordered recursion. Compute the prececessor class for an R minimal element of ( A \ dom F ) . Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6OLD.1 F = wrecs R A G
Assertion wfrlem8OLD Pred R A dom F X = Pred R A X = Pred R dom F X

Proof

Step Hyp Ref Expression
1 wfrlem6OLD.1 F = wrecs R A G
2 1 wfrdmssOLD dom F A
3 predpredss dom F A Pred R dom F X Pred R A X
4 2 3 ax-mp Pred R dom F X Pred R A X
5 4 biantru Pred R A X Pred R dom F X Pred R A X Pred R dom F X Pred R dom F X Pred R A X
6 preddif Pred R A dom F X = Pred R A X Pred R dom F X
7 6 eqeq1i Pred R A dom F X = Pred R A X Pred R dom F X =
8 ssdif0 Pred R A X Pred R dom F X Pred R A X Pred R dom F X =
9 7 8 bitr4i Pred R A dom F X = Pred R A X Pred R dom F X
10 eqss Pred R A X = Pred R dom F X Pred R A X Pred R dom F X Pred R dom F X Pred R A X
11 5 9 10 3bitr4i Pred R A dom F X = Pred R A X = Pred R dom F X