Metamath Proof Explorer


Theorem wfrresex

Description: Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis wfrfun.1 F=wrecsRAG
Assertion wfrresex RWeARSeAXdomFFPredRAXV

Proof

Step Hyp Ref Expression
1 wfrfun.1 F=wrecsRAG
2 wefr RWeARFrA
3 2 adantr RWeARSeARFrA
4 weso RWeAROrA
5 sopo ROrARPoA
6 4 5 syl RWeARPoA
7 6 adantr RWeARSeARPoA
8 simpr RWeARSeARSeA
9 3 7 8 3jca RWeARSeARFrARPoARSeA
10 df-wrecs wrecsRAG=frecsRAG2nd
11 1 10 eqtri F=frecsRAG2nd
12 11 fprresex RFrARPoARSeAXdomFFPredRAXV
13 9 12 sylan RWeARSeAXdomFFPredRAXV