Metamath Proof Explorer


Theorem winafp

Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winafp AInacc𝑤AωA=A

Proof

Step Hyp Ref Expression
1 winalim2 AInacc𝑤Aωxx=ALimx
2 vex xV
3 limelon xVLimxxOn
4 2 3 mpan LimxxOn
5 alephle xOnxx
6 4 5 syl Limxxx
7 6 ad2antll AInacc𝑤Aωx=ALimxxx
8 simprl AInacc𝑤Aωx=ALimxx=A
9 7 8 sseqtrd AInacc𝑤Aωx=ALimxxA
10 8 fveq2d AInacc𝑤Aωx=ALimxcfx=cfA
11 alephsing Limxcfx=cfx
12 11 ad2antll AInacc𝑤Aωx=ALimxcfx=cfx
13 10 12 eqtr3d AInacc𝑤Aωx=ALimxcfA=cfx
14 elwina AInacc𝑤AcfA=AyAzAyz
15 14 simp2bi AInacc𝑤cfA=A
16 15 ad2antrr AInacc𝑤Aωx=ALimxcfA=A
17 13 16 eqtr3d AInacc𝑤Aωx=ALimxcfx=A
18 cfle cfxx
19 17 18 eqsstrrdi AInacc𝑤Aωx=ALimxAx
20 9 19 eqssd AInacc𝑤Aωx=ALimxx=A
21 20 fveq2d AInacc𝑤Aωx=ALimxx=A
22 21 8 eqtr3d AInacc𝑤Aωx=ALimxA=A
23 1 22 exlimddv AInacc𝑤AωA=A