Metamath Proof Explorer


Theorem wl-ax11-lem2

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem2 uu=y¬xx=yxu=y

Proof

Step Hyp Ref Expression
1 sp uu=yu=y
2 aev xx=uxx=y
3 pm2.21 ¬xx=yxx=yxx=u
4 2 3 impbid2 ¬xx=yxx=uxx=y
5 1 4 anim12i uu=y¬xx=yu=yxx=uxx=y
6 wl-aleq xu=yu=yxx=uxx=y
7 5 6 sylibr uu=y¬xx=yxu=y