Metamath Proof Explorer


Theorem wl-ax11-lem3

Description: Lemma. (Contributed by Wolf Lammen, 30-Jun-2019)

Ref Expression
Assertion wl-ax11-lem3 ¬ x x = y x u u = y

Proof

Step Hyp Ref Expression
1 nfna1 x ¬ x x = y
2 naev ¬ x x = y ¬ u u = x
3 nfa1 u u u = y
4 nfna1 u ¬ u u = x
5 3 4 nfan u u u = y ¬ u u = x
6 axc11n x x = y y y = x
7 wl-aetr y y = u y y = x u u = x
8 6 7 syl5 y y = u x x = y u u = x
9 8 aecoms u u = y x x = y u u = x
10 9 con3d u u = y ¬ u u = x ¬ x x = y
11 10 imdistani u u = y ¬ u u = x u u = y ¬ x x = y
12 wl-ax11-lem2 u u = y ¬ x x = y x u = y
13 11 12 syl u u = y ¬ u u = x x u = y
14 5 13 alrimi u u = y ¬ u u = x u x u = y
15 2 14 sylan2 u u = y ¬ x x = y u x u = y
16 15 expcom ¬ x x = y u u = y u x u = y
17 ax-wl-11v u x u = y x u u = y
18 16 17 syl6 ¬ x x = y u u = y x u u = y
19 1 18 nf5d ¬ x x = y x u u = y