Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Wolf Lammen
Other stuff
wl-ax11-lem3
Next ⟩
wl-ax11-lem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
wl-ax11-lem3
Description:
Lemma.
(Contributed by
Wolf Lammen
, 30-Jun-2019)
Ref
Expression
Assertion
wl-ax11-lem3
⊢
¬
∀
x
x
=
y
→
Ⅎ
x
∀
u
u
=
y
Proof
Step
Hyp
Ref
Expression
1
nfna1
⊢
Ⅎ
x
¬
∀
x
x
=
y
2
naev
⊢
¬
∀
x
x
=
y
→
¬
∀
u
u
=
x
3
nfa1
⊢
Ⅎ
u
∀
u
u
=
y
4
nfna1
⊢
Ⅎ
u
¬
∀
u
u
=
x
5
3
4
nfan
⊢
Ⅎ
u
∀
u
u
=
y
∧
¬
∀
u
u
=
x
6
axc11n
⊢
∀
x
x
=
y
→
∀
y
y
=
x
7
wl-aetr
⊢
∀
y
y
=
u
→
∀
y
y
=
x
→
∀
u
u
=
x
8
6
7
syl5
⊢
∀
y
y
=
u
→
∀
x
x
=
y
→
∀
u
u
=
x
9
8
aecoms
⊢
∀
u
u
=
y
→
∀
x
x
=
y
→
∀
u
u
=
x
10
9
con3d
⊢
∀
u
u
=
y
→
¬
∀
u
u
=
x
→
¬
∀
x
x
=
y
11
10
imdistani
⊢
∀
u
u
=
y
∧
¬
∀
u
u
=
x
→
∀
u
u
=
y
∧
¬
∀
x
x
=
y
12
wl-ax11-lem2
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
x
u
=
y
13
11
12
syl
⊢
∀
u
u
=
y
∧
¬
∀
u
u
=
x
→
∀
x
u
=
y
14
5
13
alrimi
⊢
∀
u
u
=
y
∧
¬
∀
u
u
=
x
→
∀
u
∀
x
u
=
y
15
2
14
sylan2
⊢
∀
u
u
=
y
∧
¬
∀
x
x
=
y
→
∀
u
∀
x
u
=
y
16
15
expcom
⊢
¬
∀
x
x
=
y
→
∀
u
u
=
y
→
∀
u
∀
x
u
=
y
17
ax-wl-11v
⊢
∀
u
∀
x
u
=
y
→
∀
x
∀
u
u
=
y
18
16
17
syl6
⊢
¬
∀
x
x
=
y
→
∀
u
u
=
y
→
∀
x
∀
u
u
=
y
19
1
18
nf5d
⊢
¬
∀
x
x
=
y
→
Ⅎ
x
∀
u
u
=
y