Metamath Proof Explorer


Theorem wl-dral1d

Description: A version of dral1 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a x = y , A. x x = y or ph antecedent. wl-equsal1i and nf5di show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019)

Ref Expression
Hypotheses wl-dral1d.1 xφ
wl-dral1d.2 yφ
wl-dral1d.3 φx=yψχ
Assertion wl-dral1d φxx=yxψyχ

Proof

Step Hyp Ref Expression
1 wl-dral1d.1 xφ
2 wl-dral1d.2 yφ
3 wl-dral1d.3 φx=yψχ
4 3 com12 x=yφψχ
5 4 pm5.74d x=yφψφχ
6 5 sps xx=yφψφχ
7 6 dral1 xx=yxφψyφχ
8 1 19.21 xφψφxψ
9 2 19.21 yφχφyχ
10 7 8 9 3bitr3g xx=yφxψφyχ
11 10 pm5.74rd xx=yφxψyχ
12 11 com12 φxx=yxψyχ