Metamath Proof Explorer


Theorem wl-equsb3

Description: equsb3 with a distinctor. (Contributed by Wolf Lammen, 27-Jun-2019)

Ref Expression
Assertion wl-equsb3 ¬yy=zxyy=zx=z

Proof

Step Hyp Ref Expression
1 nfna1 y¬yy=z
2 nfeqf2 ¬yy=zyw=z
3 equequ1 y=wy=zw=z
4 3 a1i ¬yy=zy=wy=zw=z
5 1 2 4 sbied ¬yy=zwyy=zw=z
6 5 sbbidv ¬yy=zxwwyy=zxww=z
7 sbco2vv xwwyy=zxyy=z
8 equsb3 xww=zx=z
9 6 7 8 3bitr3g ¬yy=zxyy=zx=z