Metamath Proof Explorer


Theorem wl-mo2tf

Description: Closed form of mof with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020)

Ref Expression
Assertion wl-mo2tf ¬xx=yxyφ*xφyxφx=y

Proof

Step Hyp Ref Expression
1 nfnae x¬xx=y
2 nfa1 xxyφ
3 1 2 nfan x¬xx=yxyφ
4 nfnae y¬xx=y
5 nfnf1 yyφ
6 5 nfal yxyφ
7 4 6 nfan y¬xx=yxyφ
8 simpl ¬xx=yxyφ¬xx=y
9 sp xyφyφ
10 9 adantl ¬xx=yxyφyφ
11 3 7 8 10 wl-mo2df ¬xx=yxyφ*xφyxφx=y