Metamath Proof Explorer


Theorem wl-mo2tf

Description: Closed form of mof with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020)

Ref Expression
Assertion wl-mo2tf ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝜑 ) → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
2 nfa1 𝑥𝑥𝑦 𝜑
3 1 2 nfan 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝜑 )
4 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
5 nfnf1 𝑦𝑦 𝜑
6 5 nfal 𝑦𝑥𝑦 𝜑
7 4 6 nfan 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝜑 )
8 simpl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝜑 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 )
9 sp ( ∀ 𝑥𝑦 𝜑 → Ⅎ 𝑦 𝜑 )
10 9 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝜑 ) → Ⅎ 𝑦 𝜑 )
11 3 7 8 10 wl-mo2df ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥𝑦 𝜑 ) → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) ) )