Description: Closed form of mof with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-mo2tf | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
2 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 Ⅎ 𝑦 𝜑 | |
3 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) |
4 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
5 | nfnf1 | ⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝜑 | |
6 | 5 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑥 Ⅎ 𝑦 𝜑 |
7 | 4 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) |
8 | simpl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
9 | sp | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑦 𝜑 ) | |
10 | 9 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → Ⅎ 𝑦 𝜑 ) |
11 | 3 7 8 10 | wl-mo2df | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ∀ 𝑥 Ⅎ 𝑦 𝜑 ) → ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |