Metamath Proof Explorer


Theorem wlkdlem2

Description: Lemma 2 for wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses wlkd.p φPWordV
wlkd.f φFWordV
wlkd.l φP=F+1
wlkd.e φk0..^FPkPk+1IFk
Assertion wlkdlem2 φFPFIFF1k0..^FPkIFk

Proof

Step Hyp Ref Expression
1 wlkd.p φPWordV
2 wlkd.f φFWordV
3 wlkd.l φP=F+1
4 wlkd.e φk0..^FPkPk+1IFk
5 fzo0end FF10..^F
6 fveq2 k=F1Pk=PF1
7 fvoveq1 k=F1Pk+1=PF-1+1
8 6 7 preq12d k=F1PkPk+1=PF1PF-1+1
9 2fveq3 k=F1IFk=IFF1
10 8 9 sseq12d k=F1PkPk+1IFkPF1PF-1+1IFF1
11 10 rspcv F10..^Fk0..^FPkPk+1IFkPF1PF-1+1IFF1
12 5 11 syl Fk0..^FPkPk+1IFkPF1PF-1+1IFF1
13 fvex PF1V
14 fvex PF-1+1V
15 13 14 prss PF1IFF1PF-1+1IFF1PF1PF-1+1IFF1
16 nncn FF
17 npcan1 FF-1+1=F
18 16 17 syl FF-1+1=F
19 18 fveq2d FPF-1+1=PF
20 19 eleq1d FPF-1+1IFF1PFIFF1
21 20 biimpd FPF-1+1IFF1PFIFF1
22 21 adantld FPF1IFF1PF-1+1IFF1PFIFF1
23 15 22 biimtrrid FPF1PF-1+1IFF1PFIFF1
24 12 23 syld Fk0..^FPkPk+1IFkPFIFF1
25 4 24 syl5com φFPFIFF1
26 fvex PkV
27 fvex Pk+1V
28 26 27 prss PkIFkPk+1IFkPkPk+1IFk
29 simpl PkIFkPk+1IFkPkIFk
30 28 29 sylbir PkPk+1IFkPkIFk
31 30 a1i φk0..^FPkPk+1IFkPkIFk
32 31 ralimdva φk0..^FPkPk+1IFkk0..^FPkIFk
33 4 32 mpd φk0..^FPkIFk
34 25 33 jca φFPFIFF1k0..^FPkIFk