Description: Lemma 2 for wlkd . (Contributed by AV, 7-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wlkd.p | |
|
wlkd.f | |
||
wlkd.l | |
||
wlkd.e | |
||
Assertion | wlkdlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkd.p | |
|
2 | wlkd.f | |
|
3 | wlkd.l | |
|
4 | wlkd.e | |
|
5 | fzo0end | |
|
6 | fveq2 | |
|
7 | fvoveq1 | |
|
8 | 6 7 | preq12d | |
9 | 2fveq3 | |
|
10 | 8 9 | sseq12d | |
11 | 10 | rspcv | |
12 | 5 11 | syl | |
13 | fvex | |
|
14 | fvex | |
|
15 | 13 14 | prss | |
16 | nncn | |
|
17 | npcan1 | |
|
18 | 16 17 | syl | |
19 | 18 | fveq2d | |
20 | 19 | eleq1d | |
21 | 20 | biimpd | |
22 | 21 | adantld | |
23 | 15 22 | biimtrrid | |
24 | 12 23 | syld | |
25 | 4 24 | syl5com | |
26 | fvex | |
|
27 | fvex | |
|
28 | 26 27 | prss | |
29 | simpl | |
|
30 | 28 29 | sylbir | |
31 | 30 | a1i | |
32 | 31 | ralimdva | |
33 | 4 32 | mpd | |
34 | 25 33 | jca | |