Metamath Proof Explorer


Theorem x2times

Description: Extended real version of 2times . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion x2times A*2𝑒A=A+𝑒A

Proof

Step Hyp Ref Expression
1 df-2 2=1+1
2 1re 1
3 rexadd 111+𝑒1=1+1
4 2 2 3 mp2an 1+𝑒1=1+1
5 1 4 eqtr4i 2=1+𝑒1
6 5 oveq1i 2𝑒A=1+𝑒1𝑒A
7 1xr 1*
8 0le1 01
9 7 8 pm3.2i 1*01
10 xadddi2r 1*011*01A*1+𝑒1𝑒A=1𝑒A+𝑒1𝑒A
11 9 9 10 mp3an12 A*1+𝑒1𝑒A=1𝑒A+𝑒1𝑒A
12 xmullid A*1𝑒A=A
13 12 12 oveq12d A*1𝑒A+𝑒1𝑒A=A+𝑒A
14 11 13 eqtrd A*1+𝑒1𝑒A=A+𝑒A
15 6 14 eqtrid A*2𝑒A=A+𝑒A