Metamath Proof Explorer


Theorem xadd0ge

Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xadd0ge.a φA*
xadd0ge.b φB0+∞
Assertion xadd0ge φAA+𝑒B

Proof

Step Hyp Ref Expression
1 xadd0ge.a φA*
2 xadd0ge.b φB0+∞
3 xaddrid A*A+𝑒0=A
4 1 3 syl φA+𝑒0=A
5 4 eqcomd φA=A+𝑒0
6 0xr 0*
7 6 a1i φ0*
8 1 7 jca φA*0*
9 iccssxr 0+∞*
10 9 2 sselid φB*
11 1 10 jca φA*B*
12 8 11 jca φA*0*A*B*
13 1 xrleidd φAA
14 pnfxr +∞*
15 14 a1i φ+∞*
16 iccgelb 0*+∞*B0+∞0B
17 7 15 2 16 syl3anc φ0B
18 13 17 jca φAA0B
19 xle2add A*0*A*B*AA0BA+𝑒0A+𝑒B
20 12 18 19 sylc φA+𝑒0A+𝑒B
21 5 20 eqbrtrd φAA+𝑒B