Metamath Proof Explorer


Theorem xaddval

Description: Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddval A*B*A+𝑒B=ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B

Proof

Step Hyp Ref Expression
1 simpl x=Ay=Bx=A
2 1 eqeq1d x=Ay=Bx=+∞A=+∞
3 simpr x=Ay=By=B
4 3 eqeq1d x=Ay=By=−∞B=−∞
5 4 ifbid x=Ay=Bify=−∞0+∞=ifB=−∞0+∞
6 1 eqeq1d x=Ay=Bx=−∞A=−∞
7 3 eqeq1d x=Ay=By=+∞B=+∞
8 7 ifbid x=Ay=Bify=+∞0−∞=ifB=+∞0−∞
9 oveq12 x=Ay=Bx+y=A+B
10 4 9 ifbieq2d x=Ay=Bify=−∞−∞x+y=ifB=−∞−∞A+B
11 7 10 ifbieq2d x=Ay=Bify=+∞+∞ify=−∞−∞x+y=ifB=+∞+∞ifB=−∞−∞A+B
12 6 8 11 ifbieq12d x=Ay=Bifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y=ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B
13 2 5 12 ifbieq12d x=Ay=Bifx=+∞ify=−∞0+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y=ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B
14 df-xadd +𝑒=x*,y*ifx=+∞ify=−∞0+∞ifx=−∞ify=+∞0−∞ify=+∞+∞ify=−∞−∞x+y
15 c0ex 0V
16 pnfex +∞V
17 15 16 ifex ifB=−∞0+∞V
18 mnfxr −∞*
19 18 elexi −∞V
20 15 19 ifex ifB=+∞0−∞V
21 ovex A+BV
22 19 21 ifex ifB=−∞−∞A+BV
23 16 22 ifex ifB=+∞+∞ifB=−∞−∞A+BV
24 20 23 ifex ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+BV
25 17 24 ifex ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+BV
26 13 14 25 ovmpoa A*B*A+𝑒B=ifA=+∞ifB=−∞0+∞ifA=−∞ifB=+∞0−∞ifB=+∞+∞ifB=−∞−∞A+B