Metamath Proof Explorer


Theorem xbln0

Description: A ball is nonempty iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xbln0 D∞MetXPXR*PballDR0<R

Proof

Step Hyp Ref Expression
1 n0 PballDRxxPballDR
2 elbl D∞MetXPXR*xPballDRxXPDx<R
3 xmetge0 D∞MetXPXxX0PDx
4 3 3expa D∞MetXPXxX0PDx
5 4 3adantl3 D∞MetXPXR*xX0PDx
6 0xr 0*
7 xmetcl D∞MetXPXxXPDx*
8 7 3expa D∞MetXPXxXPDx*
9 8 3adantl3 D∞MetXPXR*xXPDx*
10 simpl3 D∞MetXPXR*xXR*
11 xrlelttr 0*PDx*R*0PDxPDx<R0<R
12 6 9 10 11 mp3an2i D∞MetXPXR*xX0PDxPDx<R0<R
13 5 12 mpand D∞MetXPXR*xXPDx<R0<R
14 13 expimpd D∞MetXPXR*xXPDx<R0<R
15 2 14 sylbid D∞MetXPXR*xPballDR0<R
16 15 exlimdv D∞MetXPXR*xxPballDR0<R
17 1 16 biimtrid D∞MetXPXR*PballDR0<R
18 xblcntr D∞MetXPXR*0<RPPballDR
19 18 ne0d D∞MetXPXR*0<RPballDR
20 19 3expa D∞MetXPXR*0<RPballDR
21 20 expr D∞MetXPXR*0<RPballDR
22 21 3impa D∞MetXPXR*0<RPballDR
23 17 22 impbid D∞MetXPXR*PballDR0<R