Metamath Proof Explorer


Theorem xlimconst

Description: A constant sequence converges to its value, w.r.t. the standard topology on the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses xlimconst.p kφ
xlimconst.k _kF
xlimconst.m φM
xlimconst.z Z=M
xlimconst.f φFFnZ
xlimconst.a φA*
xlimconst.e φkZFk=A
Assertion xlimconst φF*A

Proof

Step Hyp Ref Expression
1 xlimconst.p kφ
2 xlimconst.k _kF
3 xlimconst.m φM
4 xlimconst.z Z=M
5 xlimconst.f φFFnZ
6 xlimconst.a φA*
7 xlimconst.e φkZFk=A
8 1 2 5 6 7 fconst7 φF=Z×A
9 letopon ordTopTopOn*
10 4 lmconst ordTopTopOn*A*MZ×AtordTopA
11 9 6 3 10 mp3an2i φZ×AtordTopA
12 8 11 eqbrtrd φFtordTopA
13 df-xlim *=tordTop
14 13 breqi F*AFtordTopA
15 12 14 sylibr φF*A