Metamath Proof Explorer


Theorem xlimresdm

Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimresdm.1 φF*𝑝𝑚
xlimresdm.2 φM
Assertion xlimresdm φFdom*FMdom*

Proof

Step Hyp Ref Expression
1 xlimresdm.1 φF*𝑝𝑚
2 xlimresdm.2 φM
3 xlimrel Rel*
4 xlimdm Fdom*F**F
5 4 a1i φFdom*F**F
6 5 biimpa φFdom*F**F
7 1 adantr φFdom*F*𝑝𝑚
8 2 adantr φFdom*M
9 7 8 xlimres φFdom*F**FFM**F
10 6 9 mpbid φFdom*FM**F
11 releldm Rel*FM**FFMdom*
12 3 10 11 sylancr φFdom*FMdom*
13 xlimdm FMdom*FM**FM
14 13 biimpi FMdom*FM**FM
15 14 adantl φFMdom*FM**FM
16 1 2 xlimres φF**FMFM**FM
17 16 adantr φFMdom*F**FMFM**FM
18 15 17 mpbird φFMdom*F**FM
19 releldm Rel*F**FMFdom*
20 3 18 19 sylancr φFMdom*Fdom*
21 12 20 impbida φFdom*FMdom*