Description: A function converges in the extended reals iff its restriction to an upper integers set converges. (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xlimresdm.1 | |
|
xlimresdm.2 | |
||
Assertion | xlimresdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimresdm.1 | |
|
2 | xlimresdm.2 | |
|
3 | xlimrel | |
|
4 | xlimdm | |
|
5 | 4 | a1i | |
6 | 5 | biimpa | |
7 | 1 | adantr | |
8 | 2 | adantr | |
9 | 7 8 | xlimres | |
10 | 6 9 | mpbid | |
11 | releldm | |
|
12 | 3 10 11 | sylancr | |
13 | xlimdm | |
|
14 | 13 | biimpi | |
15 | 14 | adantl | |
16 | 1 2 | xlimres | |
17 | 16 | adantr | |
18 | 15 17 | mpbird | |
19 | releldm | |
|
20 | 3 18 19 | sylancr | |
21 | 12 20 | impbida | |